

VS.

Odysseus

NVIDIA.



Kari Pulli Senior Director NVIDIA Research

#### **Binocular stereo**



Given a calibrated binocular stereo pair

- fuse it to produce a depth image
- humans can do it



Stereograms: Invented by Sir Charles Wheatstone, 1838

## Anaglyphs



- Two images of complementary color are overlaid
- Glasses required
  - red filter cancels out red image component
  - green filter cancels out green component
- Each eye gets one image
  - 3D impression
- Current 3D movie theaters use this principle
  - except they use polarization filters instead of color filters



(Anaglyph Image)



(Red/Green Glasses)

#### **Shutter Glasses**



- Display flickers between left and right image
  - i.e. each even frame shows left image, each odd frame shows right image
- When left frame is shown, shutter glasses close right eye and vice versa
- Requires new displays of high frame rate (120Hz)





#### (Shutter Glasses and 120 Hz Display)



# Autostereoscopic Displays





**NVIDIA Research** 

# Camera, Display Array: MERL 3D-TV System

Front-Projection Screen



16 camera Horizontal Array
Auto-Stereoscopic Display
Efficient coding, transmission



Anthony Vetro, Wojciech Matusik, Hanspeter Pfister, and Jun Xin





The way how you usually look at the display (no 3D):



NVIDIA Research

Free Viewing (No glasses required, but some practice)



Parallel Viewing:



Free Viewing (No glasses required, but some practice)



Cross Eye Viewing:



Most likely the simpler method

NVIDIA Research

## Learning Cross Eye Viewing





Left 2D Image

- Right 2D Image Hold a finger in the middle of your eyes
- Look at the finger and slowly change its distance
- If you found the right distance
  - you see a third image in between left and right images
  - look at the third image (instead of the finger), it is in 3D

### Monocular stereo





NVIDIA Research

### 3D on YouTube



Q

#### Search results for yt3d enable true





#### How To Turn Your YouTube Videos 3D

3D code tag. Copy and paste this code into the video tag box: yt3d:enable=true Select the 3D view method from the drop down menu under the video ...

Featured Videos





#### r (yt3d:enable=true)

e best 3D videos on Youtube: yt3dblog.blogspot.com 108,449 views

iption in Japanese: z800.blog.shinobi.jp Make 3-D Style" menu ...

#### :enable=true )

I 3D test I made...(it's not supposed to be a perfect drop ...

529 views

#### =true)

e best 3D videos on Youtube: yt3dblog.blogspot.com

17,383 views

## Depth from Convergence





Human performance: up to 2-3 meters

**NVIDIA Research** 

## Depth from binocular disparity





P: converging point

C: object nearer projects to the outside of the P, disparity = +

F: object farther projects to the inside of the P, disparity = -

NVIDIA Research

Sign and magnitude of disparity











Replace human eyes with a pair of slightly displaced cameras.









Brain

NVIDIA Research





NVIDIA Research





NVIDIA Research





NVIDIA Research

### What is Disparity?





- The amount to which a single pixel is displaced in the two images is called disparity
- A pixel's disparity is inversely proportional to its depth in the scene

## What is Disparity?





- The amount to which a single pixel is displaced in the two images is called disparity
- A pixel's disparity is inversely proportional to its depth in the scene

## What is Disparity?





- The amount to which a single pixel is displaced in the two images is called disparity
- A pixel's disparity is inversely proportional to its depth in the scene

## **Disparity Encoding**





The disparity of each pixel is encoded by a gray value

- Light gray values represent high disparities
  - and dark gray values small disparities
- The resulting image is called disparity map

NVIDIA Research

### **Disparity and Depth**





 The disparity map contains sufficient information for generating a 3D model

## Depth from disparity





#### Disparity is inversely proportional to depth!

NVIDIA Research

#### Stereo





NVIDIA Research

#### Stereo





Basic Principle: Triangulation

- Gives reconstruction as intersection of two rays
- Requires
  - camera pose (calibration)
  - point correspondence

#### Stereo correspondence



- Determine Pixel Correspondence
  - Pairs of points that correspond to same scene point



**Epipolar Constraint** 

- Reduces correspondence problem to 1D search along *conjugate* epipolar lines
- Java demo: <u>http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html</u>

## **Fundamental matrix**



Let p be a point in left image, p' in right image



#### Epipolar relation

- *p* maps to epipolar line *l*'
- p' maps to epipolar line I

Epipolar mapping described by a 3x3 matrix F

$$l' = Fp$$
$$l = p'F$$

It follows that

### **Fundamental matrix**



- This matrix F is called
  - the "Essential Matrix"
    - when image intrinsic parameters are known
  - the "Fundamental Matrix"
    - essential matrix in pixel coordinates

Can solve for F from point correspondences

Each (p, p') pair gives one linear equation in entries of F



8 points give enough to solve for F (8-point algorithm)

see Marc Pollefey's notes for a nice tutorial

http://cs.unc.edu/~marc/tutorial/node53.html

#### **Eight-point algorithm**

The two view structure is equivalent to the fundamental matrix. Since the fundamental matrix  $\mathbf{F}$  is a  $3 \times 3$  matrix determined up to an arbitrary scale factor, 8 equations are

required to obtain a unique solution. The simplest way to compute the fundamental matrix consists of using Equation (3.26). This equation can be rewritten under the following form:

$$\begin{bmatrix} xx' & yx' & x' & xy' & yy' & y' & x & y & 1 \end{bmatrix} \mathbf{f} = 0$$
 (D6)

with 
$$\mathbf{m} = [x \ y \ 1]^{\top}, \mathbf{m}' = [x' y' \ 1]^{\top}$$
 and  $\mathbf{f} = [F_{11} F_{12} F_{13} F_{21} F_{22} F_{23} F_{31} F_{32} F_{33}]^{\top}$  a

vector containing the elements of the fundamental matrix F. By stacking eight of these equations in a matrix A the following equation is obtained:

$$\mathbf{A}\mathbf{f} = 0 \tag{D7}$$

This system of equation is easily solved by Singular Value Decomposition (SVD) [43]. Applying SVD to A yields the decomposition  $\mathbf{USV}^{\top}$  with U and V orthonormal matrices and S a diagonal matrix containing the singular values. These singular values  $\sigma_i$  are positive and in decreasing order. Therefore in our case  $\sigma_9$  is guaranteed to be

NVIDIA Research

identically zero (8 equations for 9 unknowns) and thus the last column of V is the correct solution (at least as long as the eight equations are linearly independent, which is equivalent to all other singular values being non-zero).





\$3

## Add singularity constraint



Algorithm

Input: *n* correspondences with  $n \ge 8$ 

1. Construct homogeneous system Ax = 0 where A is an nx9 matrix. Suppose  $A = UDV^{T}$  is its SVD.

(i.e., corresponding to the smallest singular value)

The entries of F are proportional to the components of the last column of V.

**Enforcing the constraint** rank(F) = 2: (singularity constraint)

3. compute the SVD of F

$$F = U_F D_F V_F^T$$

Set the smallest singular value equal to 0; Let D'<sub>F</sub> be the corrected matrix.

5. The corrected estimate of F, F', is given by

$$F' = U_F D'_F V_F^T$$

Epipolar lines must intersect at epipole!



#### Uncorrected F



#### Corrected F





## Stereo image rectification



- reproject image planes onto a common plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation
- two homographies (3x3 transform), one for each input image reprojection
- C. Loop and Z. Zhang. <u>Computing Rectifying Homographies for Stereo</u> <u>Vision</u> IEEE Conf. Computer Vision and Pattern Recognition, 1999

### **Stereo Rectification**









NVIDIA Res




- Corresponding regions in two images should be similar in appearance
- ...and non-corresponding regions should be different
- When will the similarity constraint fail?

## Limitations of similarity constraint





### Textureless surfaces



### Occlusions, repetition



NVIDIA Research



disparity





Right



scanline

Slide a window along the right scanline and compare contents of that window with the reference window

Matching cost: SSD or NCC



Left



SSD = sum of squared differences

scanline

**NVIDIA Research** 



Left



Right



NCC = Normalized cross-correlation

NVIDIA Research

scanline

### **Image Normalization**



- Even when the cameras are identical models, there can be differences in gain and sensitivity
- The cameras do not see exactly the same surfaces, so their overall light levels can differ
- For these reasons and more, it is a good idea to normalize the pixels in each window:

$$\bar{I} = \frac{1}{|W_m(x,y)|} \sum_{(u,v) \in W_m(x,y)} I(u,v)$$
Average pixel  
$$\|I\|_{W_m(x,y)} = \sqrt{\sum_{(u,v) \in W_m(x,y)} [I(u,v)]^2}$$
Window magnitude  
$$\hat{I}(x,y) = \frac{I(x,y) - \bar{I}}{\|I - \bar{I}\|_{W_m(x,y)}}$$
Normalized pixel

### Images as Vectors



Left

Right





Each window is a vector in an  $m^2$  dimensional vector space. Normalization makes them unit length.

### **Image Metrics**





(Normalized) Sum of Squared Differences

$$C_{SSD}(d) = \sum_{(u,v) \in W_m(x,y)} [\hat{I}_L(u,v) - \hat{I}_R(u-d,v)]^2$$
$$= \|w_L - w_R(d)\|^2$$

Normalized Cross-Correlation

$$C_{\rm NC}(d) = \sum_{(u,v) \in W_m(x,y)} \hat{I}_R(u-d,v)$$
$$= w_L \times w_R(d) = \cos\theta$$

### Census



### $C_I(i, j) = (I(x + i, y + j) > I(x, y))$

| 125 | 126 | 125 |
|-----|-----|-----|
| 127 | 128 | 130 |
| 129 | 132 | 135 |





only compare bit signature

(Real-time chip from TYZX based on Census)

NVIDIA Research

### Effect of window size







W = 3

W = 20

- Smaller window
  - + More detail
  - More noise
  - Larger window
    - + Smoother disparity maps
    - Less detail

### Occlusion edges are difficult





### Right image

**NVIDIA Research** 

### Offset windows







Equivalent to using min of nearby cost
Loss of depth accuracy

### **Discontinuity detection**



Use offset windows only where appropriate



NVIDIA Reseato

### Locally adaptive support



Apply weights to contributions of neighboring pixels according to similarity and proximity [Yoon CVPR05]



(a) left support win- (b) right support win- (c) color difference dow dow between (a) and (b)

### Results with window search



Data



### Window-based matching

### Ground truth







- Uniqueness
  - For any point in one image, there should be at most one matching point in the other image



NVIDIA Research



- Uniqueness
  - For any point in one image, there should be at most one matching point in the other image
- Ordering
  - Corresponding points should be in the same order in both views





- Uniqueness
  - For any point in one image, there should be at most one matching point in the other image
- Ordering
  - Corresponding points should be in the same order in both views



Ordering constraint does not hold

NVIDIA Research



- Uniqueness
  - For any point in one image, there should be at most one matching point in the other image
- Ordering
  - Corresponding points should be in the same order in both views
- Smoothness
  - We expect disparity values to change slowly (for the most part)

### Scanline stereo



- Try to coherently match pixels on the entire scanline
- Different scanlines are still optimized independently





### **Stereo Correspondences**





NVIDIA Research

### **Stereo Correspondences**





Wednesday, March 14, 12

### Search Over Correspondences





**Disoccluded Pixels** 

### Three cases:

- Sequential
- Occluded
- Disoccluded
- cost of match
- cost of no match
- cost of no match



Occluded Pixels



- Scan across grid computing optimal cost for each node given its upper-left neighbors
- Backtrack from the terminal to get the optimal path

NVIDIA Research

**Dis-occluded** Pixels



**Occluded Pixels** 



- Dynamic programming yields the optimal path through grid
- This is the best set of matches that satisfy the ordering constraint



Occluded Pixels



- Scan across grid computing optimal cost for each node given its upper-left neighbors
- Backtrack from the terminal to get the optimal path

NVIDIA Research

**Dis-occluded** Pixels



Occluded Pixels



- Scan across grid computing optimal cost for each node given its upper-left neighbors
- Backtrack from the terminal to get the optimal path

NVIDIA Research

**Dis-occluded** Pixels

## Coherent stereo on 2D grid



Scanline stereo generates streaking artifacts



 Can't use dynamic programming to find spatially coherent disparities/ correspondences on a 2D grid

### Better methods exist...







Y. Boykov, O. Veksler, and R. Zabih, <u>Fast Approximate Energy Minimization</u> via Graph Cuts, PAMI 2001

For the latest and greatest: <u>http://www.middlebury.edu/stereo/</u>

### Small baseline $\rightarrow$ large depth error







### **Small Baseline**

Large Baseline

# Large baseline $\rightarrow$ Foreshortening (and occlusions)



- Matching with fixed-size windows will fail!
- Possible solution: adaptively vary window size
- Another solution: *model-based stereo*

## Model-based stereo: Manual modeling





Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. <u>Modeling and Render</u> <u>Architecture from Photographs.</u> SIGGRAPH 1996.

Wednesday, March 14, 12

## Manually select corresponding features





## ... and define a polygonal model





NVIDIA Research

## Bundle adjustment





NVIDIA Research

### Add textures





NVIDIA Research
### More details from model-based stereo







offset image

key image

### Model-based stereo







warped offset image

key image



displacement map

### Model-based stereo





### Active stereo with structured light





# Project "structured" light patterns onto the object simplifies the correspondence problem

NVIDIA Research



#### Dense range (and color) from stereo + active light







Calibrate cameras from known 3D-2D point correspondences [Tsai '87] Δ



Sweep a vertical light stripe in small steps

Detect the stripe from camera images



 Project a line from a pixel to the right image

• Triangulate





Δ



 Don't look at a single image where the beam is centered

 Look at a sequence of images when the beam was centered at each pixel



time

 Invert the function to locate beam in each image [Curless and Levoy '95]





А

### Video View Interpolation



<u>http://research.microsoft.com/users/larryz/videoviewinterpolation.htm</u>



Left View (recorded)

Virtual Interpolated View (not recorded) Right View (recorded)

- Given a 3D model of the scene, one can use a virtual camera to record new views from arbitrary viewpoints
- For example: Freeze frame effect from the movie Matrix
- [L. Zitnick, S. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, "High-quality video view interpolation using a layered representation", SIGGRAPH, 2004]

# Created with Flip4Mac.com

**NVIDIA Research** 

### Active stereo with structured light





NVIDIA Research

### Laser scanning







Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

#### **Optical triangulation**

- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

### Scanning the David





height of gantry: weight of gantry: 7.5 meters800 kilograms

### Statistics about the scan



- 480 individual scans
- 2 billion polygons
- 7,000 color images
- 32 gigabytes
- 30 nights of scanning
- 1,080 man-hours
- 22 people





NVIDIA Research





### David's left eye





0.25 mm model

photograph

holes from Michelangelo's drill

artifacts from space carving

noise from laser scatter



#### Single scan of David's cornea



#### Mesh constructed from several scans

# **Computational Stereo Camera System with Programmable Control Loop**

Simon Heinzle<sup>1</sup> Pierre Greisen<sup>1;2</sup> David Gallup<sup>3</sup> Christine Chen<sup>1</sup> Daniel Saner<sup>2</sup> Aljoscha Smolic<sup>1</sup> Andreas Burg<sup>2</sup> Wojciech Matusik<sup>1</sup> Gross<sup>1;2</sup>



2 **ETH** 

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Markus





© Disney Research Zurich



#### **Vergence-accomodation conflict**

© Disney Research Zurich



Vergence-accomodation conflict defines maximum 'pop-out' effect

© Disney Research Zurich

# Screen space disparity

#### **Convergence point**





- Disparity induces 3D illusion
- Directly relates to comfort zone
- Central input for our controller

© Disney Research Zurich

# **Disparity calculation**





- Disparity induces 3D illusion
- Directly relates to comfort zone
- Central input for our controller

 $d \approx -f \times b \times \left(\frac{1}{z} - \frac{1}{c}\right)$ 

© Disney Research Zurich

### **Baseline change**



### **Convergence** change



**Disparity range limits** 



| Disparity range<br>(degree) | Sensation              |
|-----------------------------|------------------------|
| 0~0.5                       | Comfortable            |
| 0.5~1                       | Small fatigue          |
| 1~2                         | Fatigue                |
| 2~3                         | Pain                   |
| 3~                          | No stereoscopic fusion |

NVIDIA Research

# **Disparity-based control**

- Comfort zone disparity bracket  $d_{\min} < d < d_{\max}$
- Idea:
  - Measure disparities
  - Adjust camera parameters
    - vergence
    - baseline

















# **Disparity-based control**





# Automatic control example




## **Tracking example**

© Disney Research Zurich



## **Touch focus and convergence**

© Disney Research Zurich

## Hardware architecture





## **Hierarchical disparity**



Left, level 2:

#### Perform initial matching

Right, level 2:





© Disney Research Zurich



## **Hierarchical disparity**



Left, level 1:

## Recursively propagate matches

Right, level 1:





© Disney Research Zurich

## Window Violation







Wednesday, March 14, 12

N

## **Window Violation**









NVIDIA

## **Window Violation**

Δ



## **Toe-In vs. HIT Mode**

Toe-in Mode: Convergence created by camera rotation (common in live action) -Causes Keystone Distortion.



## **Toe-In vs. HIT Mode**

 HIT (Horizontal Image Translation) Mode: Cameras remain parallel, convergence is created by offsetting the film back - No keystoning



## **Toe-In Mode**



• Vertical Keystoning (ouch!)



NVID

## **HIT Mode**



#### No Vertical Keystoning



NVIDIA Re

#### 3D Reconstruction from aerial images





- Stereo cameras are mounted on an airplane to obtain a terrain map
- Images taken from http://www.robotic.de/Heiko.Hirschmueller/

NVIDIA Research

#### **3D Reconstruction of Cities**





## City of Dubrovnik reconstructed from images taken from Flickr in a fully automatic way

S. Agarwal, N. Snavely, I. Simon, S. Seitz and R. Szeliski "Building Rome in a Day", ICCV, 2009

NVIDIA Research

#### The Pulfrich effect cover (only) the left eye with sunglasses





NVIDIA Research

# The neuronal basis of the Pulfrich effect in primate

Jenny Read Bruce Cumming

Laboratory of Sensorimotor Research National Eye Institute National Institutes of Health Bethesda, Maryland

## The Pulfrich effect



 Illusory perception of a moving object when one eye's image is delayed



# The Pulfrich effect space time

- Moving object
- A delay is introduced in one eye's image



- Moving object
- A delay is introduced in one eye's image



Moving object

#### now

- A delay is introduced in one eye's image
- The object is perceived as moving in depth

## **Classical explanation**

 Temporal delay is geometrically equivalent to spatial disparity Temporal delay is geometrically equivalent to spatial disparity

**Temporal delay** 



Temporal delay is geometrically equivalent to spatial disparity

**Spatial disparity** 



## **Classical explanation**

- Temporal delay is geometrically equivalent to spatial disparity
  - so Pulfrich stimulus activates mechanisms which usually process spatial disparity

## But: the classic explanation doesn't seem to work for the stroboscopic Pulfrich effect (Lee, 1970)

### Stroboscopic Pulfrich effect Flashing stimulus, one eye lagging the other



Stroboscopic Pulfrich effect Flashing stimulus, one eye lagging the other No spatial disparity, purely temporal delay



## Neuronal basis of the Pulfrich effect

- Suggestion (Qian & Anderson, 1997):
  - the stimulus activates cells sensitive both to
    - direction of motion and
    - interocular disparity
- ⇒joint encoding of motion and disparity
  - implies receptive fields which are inseparable (tilted) in space and time

#### Direction-selective cells have receptive fields which are tilted in space and time



#### Receptive fields tuned to disparity and direction of motion



# Designed to respond to a moving object with disparity...



# ...will also respond to a moving object with zero disparity but a temporal delay



**Stroboscopic Pulfrich effect** No spatial disparity, purely temporal delay Stroboscopic stimulus activates tilted RFs



#### Stereo camera phones









#### At least Jon Peddie believes in 3D



It's not just about games; the addition of two cameras will enable gesture-based controls, advanced AR applications, visualization with depth, and real-world data capture 2D and S3D Smartphones (M units per year WW) Jon Peddie Research 700 600 500 400 300 200 100 n 2010 2011 2012 2013 2014 2015 2016 S3D capture and display capability by 2015 (Source: Jon Peddie

Online comment by "ralphg":

3D tvs failed. 3D cinema is limping. 3D digital cameras have not taken off. Popup books are not more popular than flat paper ones.

As for smartphones, in the real world, people use them simply as portable computers: check email, send texts, make phone calls, and a few other tasks. No