Computational SO Photography Denoising

Jongmin Baek

CS 478 Lecture Feb 13, 2012

Announcements

- Term project proposal
 - Due Wednesday
- Proposal presentation
 - Next Wednesday
 - Send us your slides (Keynote, PowerPoint, etc)
 - 4 minutes per group
- Assignment #2 grading
 - Sign up at Rm. 360.

Overview

- Noise model
- Image priors
 - Self-similarity
 - Sparsity
- Algorithms
 - Non-local Means
 - BM3D

Noise

• Every observation incurs some uncertainty.

Ground truth

Observation

Noise

• Every observation incurs some uncertainty.

Source of Noise

- Photon shot noise
- Read noise
- Thermal noise
- Pixel non-uniformity
- Processing artifacts (demosaicking, JPEG)

Image Formation Model

Observation

Scene

Additive Noise

Nσ

Aside: Why Gaussian?

- Too many noise sources to model individually.
- Sum of random variables tend to a Gaussian distribution.
- Denoising algorithms exist for other models.

- Given J, compute I (and N.)
- More unknowns than constraints!

Image Priors

- Images are not just random collection of intensity values.
 - High correlations among nearby pixels
 - Denoise by averaging with nearby pixels?

Gaussian Filter

• Gaussian of stdev 5

• Noise is gone, but so is detail.

Image Priors

- Images are not just random collection of intensity values.
 - High correlations among nearby pixels
 - Denoise by averaging with nearby pixels?
 - Denoise by averaging with nearby pixels of similar color?

Bilateral Filter Bilateral filter with $\sigma_x = \sigma_y = 10, \sigma_r = 0.2$

Better, but still not great when noise is high.

Image Priors

- Images are not just random collection of intensity values.
 - Denoise by averaging with nearby pixels?
 - Denoise by averaging with nearby pixels of similar color?
 - Denoise by averaging with nearby pixels of similar texture?

Non-Local Means Buades et al., 2005 (CVPR)

- Natural images have repetitive textures.
 - Pixels with similar textures will probably have similar values.
 - More discriminative than bilateral filtering.

How-to: NL-Means

 It turns out this can be ensconced in the Gaussian filtering framework.

$$v'(x) = \sum'_{y} v(y) f(p(x) - p(y))$$

Here p(x) is the image patch centered at x,
 in a vectorized form.

How-to: NL-Means $\mathbf{v}'(x) = \sum_{y} \mathbf{v}(y) \mathbf{f}(\mathbf{p}(x) - \mathbf{p}(y))$

- For every *x*,
 - Compute vector $\mathbf{p}(x)$.
 - For every neighbor y, Only look at 21x21 window around x
 - Compute vector p(y). 7x7 patch around pixel, so 49-dim vector
 - Calculate the weight $\exp(-|\mathbf{p}(x)-\mathbf{p}(y)|^2 / 2\sigma^2)$
 - Do the weighted sum.

How-to: NL-Means $\mathbf{v}'(x) = \sum_{y}' \mathbf{v}(y) \mathbf{f}(\mathbf{p}(x) - \mathbf{p}(y))$

- Slow part
 - Calculate, for every pair (x,y), $|\mathbf{p}(x)-\mathbf{p}(y)|^2$
 - Sum of squared difference between two patches.

 $\sum_{i} \sum_{j} |A_{x}(i,j) - A_{y}(i,j)|^{2}$

 $= \underbrace{\sum_{i} \sum_{j} A_{x}^{2}(i,j)}_{\sum_{i} \sum_{j} A_{y}^{2}(i,j)} \text{ Easy with integral image}$ $= 2 \sum_{i} \sum_{j} A_{x}(i,j) A_{y}(i,j) \text{ Same as } A_{x} \otimes A_{y}^{T}$

NL-Means with FFT

 $v'(x) = \sum'_{y} v(y) f(p(x) - p(y))$

- Compute the integral image of v^2 .
- For every *x*,
 - Compute A_x.
 - Compute $f^{-1}{f\{A_x\} f\{v\}}$ Simulates $A_x \otimes A_y^{\top}$ for all y
 - For every neighbor y,
 - Calculate the weight $\exp(-|\mathbf{p}(x)-\mathbf{p}(y)|^2 / 2\sigma^2)$
 - Do the weighted sum.

NL-Means with FFT

	Runtime N = # of pixels, M = dim. of p-space
Naive	O(N ² M)
With FFT	O(N²logN)

NL-Means with FFT

when neighbor search is restricted to N'

	Runtime N = # of pixels, M = dim. of p-space
Naive	O(N N' M)
With FFT	O(N (N'+M) log (N'+M))

NL-Means Filter

• Why does it work better than bilateral?

Even Faster NL-Means

- Last time, we discussed how to make Gaussian filters very, very fast.
 - Applicable here as well?

Challenges

 $v'(x) = \sum'_{y} v(y) f(p(x) - p(y))$

• p is very high-dimensional.

- Time complexity of our filtering algorithms scale with dimensionality of p.
- Can we lower the dimensionality of p?

Patch Space

 $v'(x) = \sum'_{y} v(y) f(p(x) - p(y))$

- Not all values in the p-space are equally plausible.
 - There are subspaces that are much more likely.
 - PCA to reduce dimensionality?

PCA on Patches

 $v'(x) = \sum'_{y} v(y) f(p(x) - p(y))$

- Generate the p-vectors for all pixels.
 - High dimensional! (e.g. 147 if 7x7 patch on 3-channel img)
- Perform PCA to identify commonly occurring subspaces.
 - Perhaps find ~6 principle components.
- Project the p-vectors onto this subspace.
- Voilà.

PCA on Patches

Six principal components from the cat image

PCA on Patches

- PCA performs denoising!
 - PCA throws away non-principal components
 - Makes patches "closer" together.

NL-Means Filter

NL-Means: Analysis

- Find similar patches and average them.
 - Should we do something besides averaging?

• Hypothesis

- There exists a transform *T* such that applying *T* to patches will admit a sparse representation.
- This is useful in compression.
 - DCT in JPEG encoding.
 - PCA in NL-Means dimensionality reduction.

- Take a patch in the image.
 - Apply Haar wavelet transform

Monday, February 13, 12

Haar Wavelet Transform

Monday, February 13, 12

Haar Wavelet Transform

Monday, February 13, 12

Note that the coefficients are sparse!

Monday, February 13, 12

The coefficients are no longer sparse!

• For every image patch,

- Perform 2D Haar wavelet transform.
- Perform a soft thresholding:
 - Pull each coefficient towards zero (by some amount Δ .)
 - The patch is now more "natural"
- Invert transform to recover patch.

Process 8x8 patches

Huh?

Partitioning the image creates artifacts.

Process all (overlapping) patches and blend them.

Summary

- Non-Local Means
 - Exploit the inter-patch correlations.
- Wavelet Shrinkage
 - Exploit the intra-patch correlations.
- Can we perhaps do both?

- "Block-Matching 3D"
 - Perform wavelet thresholding.
 - Also combine multiple patches.
- Widely recognized as the state-of-the-art denoising technique.

• Step I. For each patch, find similar patches.

• Step 2. Group the similar patches into a stack.

• Step 3. Perform a 3D Haar wavelet transform.

• Step 4. Apply shrinkage (or hard thresholding.)

• Step 5. Apply inverse Haar wavelet transform.

Step 6. Combine the patches to form image*.

Each patch is a given weight inversely proportional to the # of nonzero entries in wavelet domain.

• Step 6. (Optional) Do it again.

Instead of thresholding, apply Wiener filter. (Attenuate each coefficient by some scale factor.)

Works even with really bad noise

Summary

Non-Local Means

- Exploit the inter-patch correlations.
- Wavelet Shrinkage
 - Exploit the intra-patch correlations.
- BM3D
 - Exploit both.

Parting Thoughts

- In computational photography, we are not limited to taking a single photograph and denoising it!
 - Flash-no-flash pair denoising
 - Blurry-noisy pair denoising
 - Stack denoising

Parting Thoughts

• The ideas here can be applied elsewhere.

- Deblurring
- Sharpening
- Super-resolution

Filler Slide

 How would you denoise video using one of these algorithms?

 How would you denoise a 3D mesh using one of these algorithms?

Questions?

Monday, February 13, 12

Reminder

- Term project proposal
 - Due Wednesday
- Proposal presentation
 - Next Wednesday
 - Send us your slides (Keynote, PowerPoint, etc)
 - 4 minutes per group
- Assignment #2 grading
 - Sign up at Rm. 360.