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Announcements
• Term project proposal

• Due Wednesday

• Proposal presentation

• Next Wednesday

• Send us your slides (Keynote, PowerPoint, etc)

• 4 minutes per group

• Assignment #2 grading

• Sign up at Rm. 360.
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Overview

• Noise model

• Image priors

• Self-similarity

• Sparsity

• Algorithms

• Non-local Means

• BM3D
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Noise
• Every observation incurs some uncertainty.

Ground truth Observation
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Noise
• Every observation incurs some uncertainty.

ISO 1600
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Source of Noise

• Photon shot noise

• Read noise

• Thermal noise

• Pixel non-uniformity

• Processing artifacts (demosaicking, JPEG)

• ...
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Image Formation Model
Scene Additive Noise

+

Observation

=

J I Nσ
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Aside: Why Gaussian?

• Too many noise sources to model 
individually.

• Sum of random variables tend to a 
Gaussian distribution.

• Denoising algorithms exist for other 
models.
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Problem

• Given J, compute I  (and N.)

• More unknowns than constraints!

Scene Noise

+

Observation

=

J I N
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Image Priors

• Images are not just random collection of 
intensity values.

• High correlations among nearby pixels

• Denoise by averaging with nearby pixels?
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Gaussian Filter
• Gaussian of stdev 5

• Noise is gone, but so is detail.
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Image Priors

• Images are not just random collection of 
intensity values.

• High correlations among nearby pixels

• Denoise by averaging with nearby pixels?

• Denoise by averaging with nearby pixels 
of similar color?

Monday, February 13, 12



Bilateral Filter
• Bilateral filter with σx=σy=10, σr=0.2

• Better, but still not great when noise is high.
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Image Priors

• Images are not just random collection of 
intensity values.

• Denoise by averaging with nearby pixels?

• Denoise by averaging with nearby pixels 
of similar color?

• Denoise by averaging with nearby pixels 
of similar texture?
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Non-Local Means
Buades et al., 2005 (CVPR)

• Natural images have repetitive textures.

• Pixels with similar textures will probably 
have similar values.

• More discriminative than bilateral 
filtering.
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How-to: NL-Means
• It turns out this can be ensconced in the 

Gaussian filtering framework.

• Here p(x) is the image patch centered at x, 
in a vectorized form.

v’(x) = ∑’y v(y) f(   p(x)  -  p(y)   )
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How-to: NL-Means

• For every x,

• Compute vector p(x).

• For every neighbor y, 

• Compute vector p(y).

• Calculate the weight exp( -|p(x)-p(y)|2 / 2σ2 )

• Do the weighted sum.

v’(x) = ∑’y v(y) f(   p(x)  -  p(y)   )

Only look at 21x21 window around x

7x7 patch around pixel,
so 49-dim vector
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How-to: NL-Means

• Slow part

• Calculate, for every pair (x,y),

|p(x)-p(y)|2

• Sum of squared difference 
between two patches.

v’(x) = ∑’y v(y) f(   p(x)  -  p(y)   )
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Calculating SSD

∑i ∑j | Ax(i,j) - Ay(i,j) |2

   =   ∑i ∑j  Ax2(i,j)
     + ∑i ∑j  Ay2(i,j)
     - 2 ∑i ∑j Ax(i,j)Ay(i,j)

Ax Ay

Easy with integral image

Same as Ax⊗Ay⟙
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NL-Means with FFT

• Compute the integral image of v2.

• For every x,

• Compute Ax.

• Compute ⨍-1{ ⨍{Ax} ⨍{v} }

• For every neighbor y, 

• Calculate the weight exp( -|p(x)-p(y)|2 / 2σ2 )

• Do the weighted sum.

v’(x) = ∑’y v(y) f(   p(x)  -  p(y)   )

Simulates Ax⊗Ay⟙ for all y
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NL-Means with FFT

Runtime
N = # of pixels, M = dim. of p-space

Naive O(N2M)

With FFT O(N2logN)
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NL-Means with FFT

Runtime
N = # of pixels, M = dim. of p-space

Naive O(N N’ M)

With FFT O(N (N’+M) log (N’+M))

when neighbor search is restricted to N’
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NL-Means Filter

• Why does it work better than bilateral?
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Even Faster NL-Means

• Last time, we discussed how to make 
Gaussian filters very, very fast.

• Applicable here as well?
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Challenges

• p is very high-dimensional.

• Time complexity of our filtering 
algorithms scale with dimensionality of p.

• Can we lower the dimensionality of p?

v’(x) = ∑’y v(y) f(   p(x)  -  p(y)   )
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Patch Space

• Not all values in the p-space are equally 
plausible.

• There are subspaces that are much more 
likely.

• PCA to reduce dimensionality?

v’(x) = ∑’y v(y) f(   p(x)  -  p(y)   )
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PCA on Patches

• Generate the p-vectors for all pixels.

• High dimensional! (e.g. 147 if 7x7 patch on 3-channel img)

• Perform PCA to identify commonly 
occurring subspaces.

• Perhaps find ~6 principle components.

• Project the p-vectors onto this subspace.

• Voilà.

v’(x) = ∑’y v(y) f(   p(x)  -  p(y)   )

Monday, February 13, 12



PCA on Patches
Six principal components from the cat image
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PCA on Patches

• PCA performs denoising!

• PCA throws away non-principal 
components

• Makes patches “closer” together.
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NL-Means Filter
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NL-Means: Analysis

• Find similar patches and average them.

• Should we do something besides 
averaging?
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Wavelet Shrinkage

• Hypothesis

• There exists a transform T such that 
applying T to patches will admit a sparse 
representation.

• This is useful in compression.

• DCT in JPEG encoding.

• PCA in NL-Means dimensionality 
reduction.
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Wavelet Shrinkage

• Take a patch in the image.

• Apply Haar wavelet transform
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Haar Wavelet Transform

Average pairs. Duplicate to upsample

1 0 2 4 1 3 1 0

0.5 3 2 0.5

1.75 1.25

1.5
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Haar Wavelet Transform

Average pairs. Duplicate to upsample

1 1 1 1 1 1 0 0

1 1 1 0

1 0.5

0.5
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Haar Wavelet Transform

Average pairs. Duplicate to upsample

1 1 1 1 1 1 0 0

1 1 1 0

1 0.5

0.5

0 0 0 0

Differences

0 1

0.5
0.5
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Haar Wavelet Transform

Average pairs. Duplicate to upsample

1 1 1 1 1 1 0 0

1 1 1 0

1 0.5

0.5

0 0 0 0

Differences

0 1

0.5
0.75
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Haar Wavelet Transform
1 1 1 1 1 1 0 0

0 0 0 0 0 1 0.5 0.75

Input

Output

Note that the coefficients are sparse!
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Haar Wavelet Transform
1 1 1 1 1 1 0 0

0 0 0 0 0 1 0.5 0.75

1.03 0.94 1.00 0.95 1.04 0.98 0.00 0.02
Noisy
Input

0.09 0.05 0.06 -0.02 0.01 1.00 0.47 0.745
Noisy

Output

The coefficients are no longer sparse!

Input

Output
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Wavelet Shrinkage

• For every image patch,

• Perform 2D Haar wavelet transform.

• Perform a soft thresholding:

• Pull each coefficient towards zero
(by some amount Δ.)

• The patch is now more “natural”

• Invert transform to recover patch.
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Wavelet Shrinkage

Huh?
Partitioning the image creates artifacts.

Process 8x8 patches
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Wavelet Shrinkage

Process all (overlapping) patches and blend them.
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Summary

• Non-Local Means

• Exploit the inter-patch correlations.

• Wavelet Shrinkage

• Exploit the intra-patch correlations.

• Can we perhaps do both?
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BM3D
Dabov et al., 2006 (IEEE TIP)

• “Block-Matching 3D”

• Perform wavelet thresholding.

• Also combine multiple patches.

• Widely recognized as the state-of-the-art 
denoising technique.

Monday, February 13, 12



BM3D
Dabov et al., 2006 (IEEE TIP)

• Step 1. For each patch, find similar patches.
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BM3D
Dabov et al., 2006 (IEEE TIP)

• Step 2. Group the similar patches into a stack.
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BM3D
Dabov et al., 2006 (IEEE TIP)

• Step 3. Perform a 3D Haar wavelet transform.
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BM3D
Dabov et al., 2006 (IEEE TIP)

• Step 4. Apply shrinkage (or hard thresholding.)
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BM3D
Dabov et al., 2006 (IEEE TIP)

• Step 5. Apply inverse Haar wavelet transform.
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BM3D
Dabov et al., 2006 (IEEE TIP)

• Step 6. Combine the patches to form image*.

Each patch is a given weight inversely 
proportional to the # of nonzero entries in 

wavelet domain.
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BM3D
Dabov et al., 2006 (IEEE TIP)

• Step 6. (Optional) Do it again.

Instead of thresholding, apply Wiener filter.
(Attenuate each coefficient by some scale factor.)
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BM3D
Dabov et al., 2006 (IEEE TIP)
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BM3D
Dabov et al., 2006 (IEEE TIP)

Works even with really bad noise
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Summary

• Non-Local Means

• Exploit the inter-patch correlations.

• Wavelet Shrinkage

• Exploit the intra-patch correlations.

• BM3D

• Exploit both.
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Parting Thoughts

• In computational photography, we are not 
limited to taking a single photograph and 
denoising it!

• Flash-no-flash pair denoising

• Blurry-noisy pair denoising

• Stack denoising

• ...
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Parting Thoughts

• The ideas here can be applied elsewhere.

• Deblurring

• Sharpening

• Super-resolution

• ...
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Filler Slide

• How would you denoise video using one of 
these algorithms?

• How would you denoise a 3D mesh using 
one of these algorithms?
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Questions?
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Reminder
• Term project proposal

• Due Wednesday

• Proposal presentation

• Next Wednesday

• Send us your slides (Keynote, PowerPoint, etc)

• 4 minutes per group

• Assignment #2 grading

• Sign up at Rm. 360.
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