⊕ ⊖ Computational ⊗ ⊘ Photography Bilateral Filtering+

Jongmin Baek

CS 478 Lecture Feb 1, 2012

Announcements

Assignment I grading

- Are you signed up?
- Assignment 2
 - Due 2/8
- Term project proposal
 - Due 2/13
 - Must have had project conference. Sign up.

Overview

- Bilateral filtering
 - Theory and Applications
- Generalizations
- Other edge-aware filters

Bilateral Filtering

- A very popular "edge-aware" filter
- Blurs a signal without destroying structure

Blurring 101

• For each pixel v, mix it with its neighbors.

- Typically a convolution with a kernel f: NEIGHBOR $v'(x_1, x_2) = \sum_{y_1, y_2} v(y_1, y_2) f(y_1 - x_1, y_2 - x_2).$ SUM WEIGHT
- Kernel is typically normalized (sum to one)

Box Filter

 $v'(x_1, x_2) = \sum_{y_1, y_2} v(y_1, y_2) f(y_1 - x_1, y_2 - x_2).$

• Box filter of size w x h

$f(a, b) = 1/(wh), \text{ if } |a| \le w/2 \text{ and } |b| \le h/2, \\ 0, \text{ otherwise.}$

Box Filter

$v'(x_1, x_2) = \sum_{y_1, y_2} v(y_1, y_2) f(y_1 - x_1, y_2 - x_2).$

• Box filter of size w x h



Gaussian Filter

 $v'(x_1, x_2) = \sum_{y_1, y_2} v(y_1, y_2) f(y_1 - x_1, y_2 - x_2).$

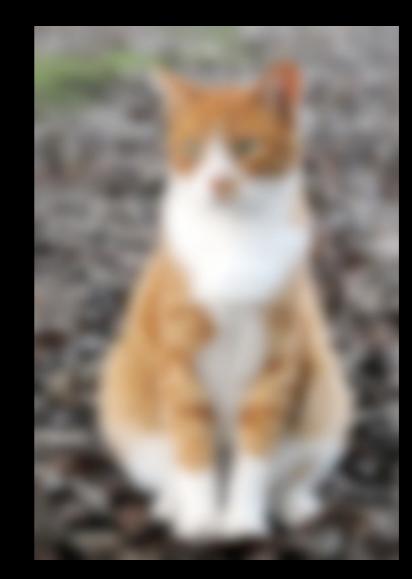
• Gaussian of stdev 5

$f(a, b) = exp(-[a^2+b^2]/10)/(50\pi)^{0.5}$

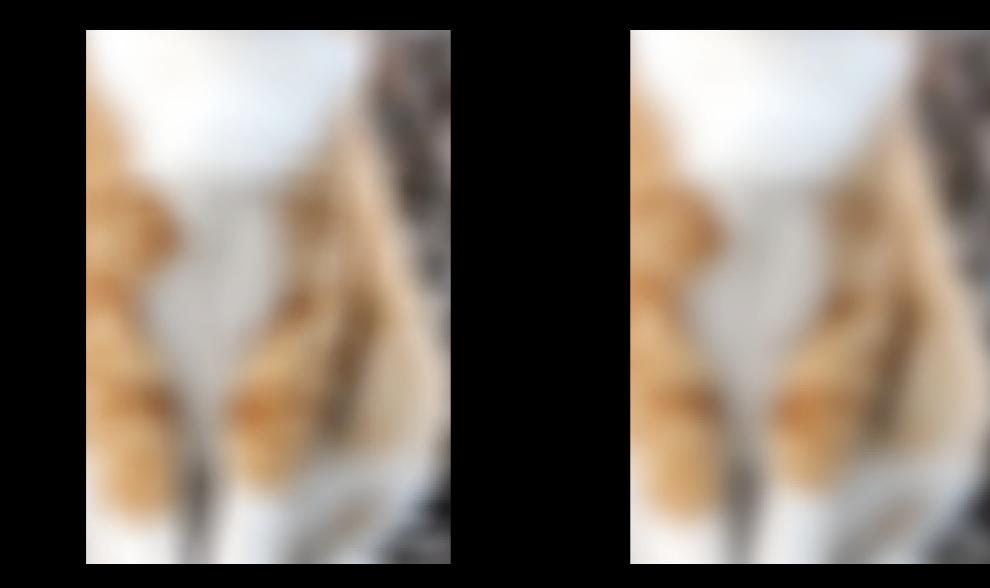
Gaussian Filter

$v'(x_1, x_2) = \sum_{y_1, y_2} v(y_1, y_2) f(y_1 - x_1, y_2 - x_2).$

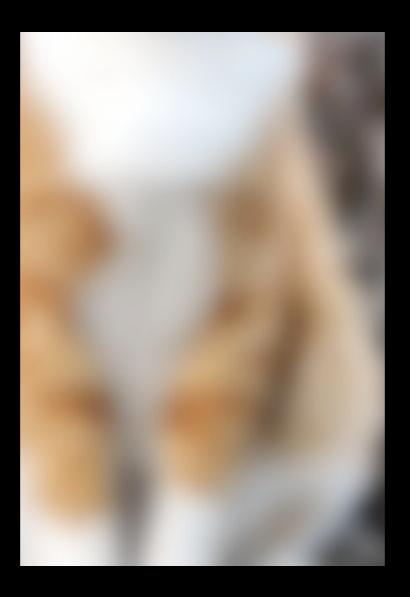
• Gaussian of stdev 5



Box vs. Gaussian



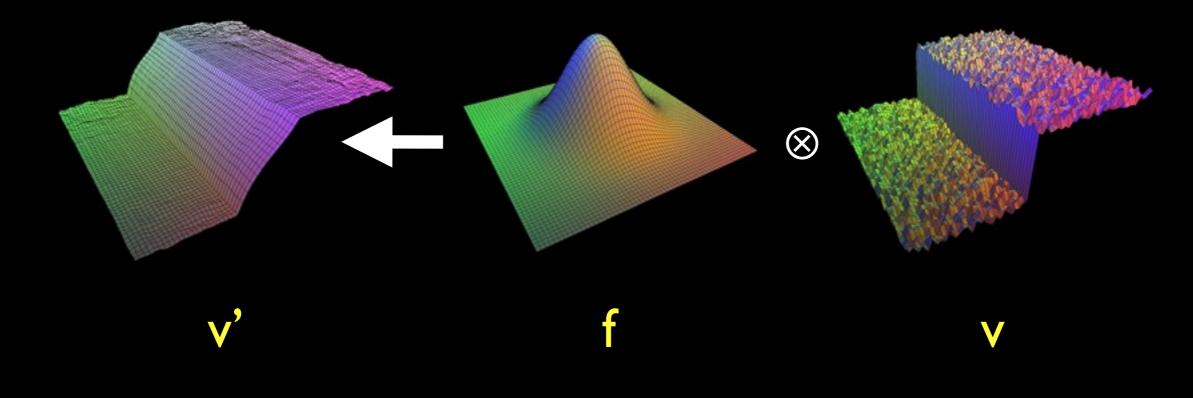
Box vs. Gaussian



Gaussian on Edges

•Averaging with neighbors.

- Weights decay as spatial distance grows.
- $\mathbf{v}'(x) = \sum_{y} \mathbf{v}(y) \mathbf{f}(y-x).$



Gaussian on Edges

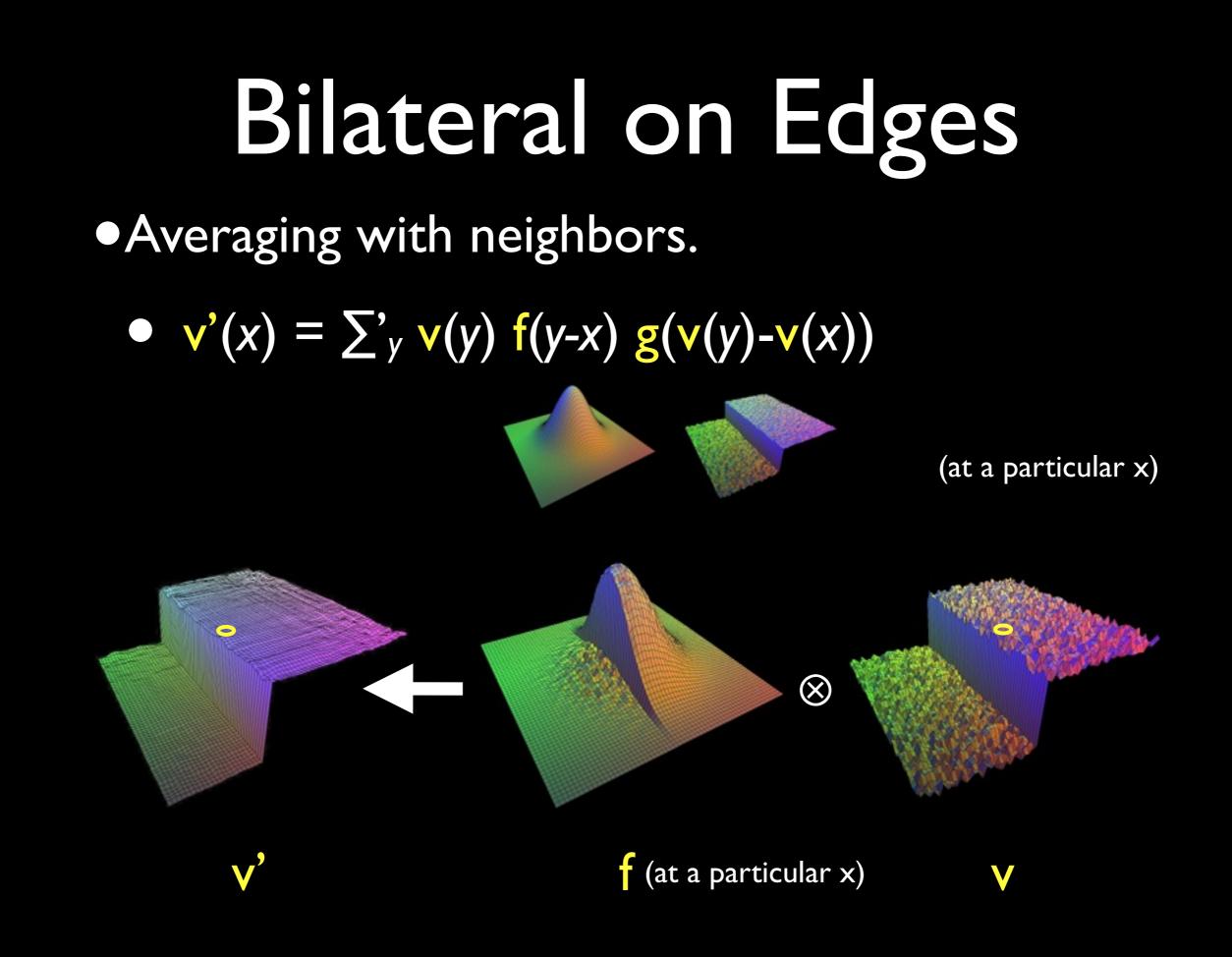
- Why do we average with neighbors?
 - Trying to get a *better* estimate of local radiance
 - If so, why not average with neighbors that are more likely to have similar radiance?

Bilateral filtering

•Averaging with neighbors.

- Weights decay as spatial distance grows.
- Weights decay as color distance grows.

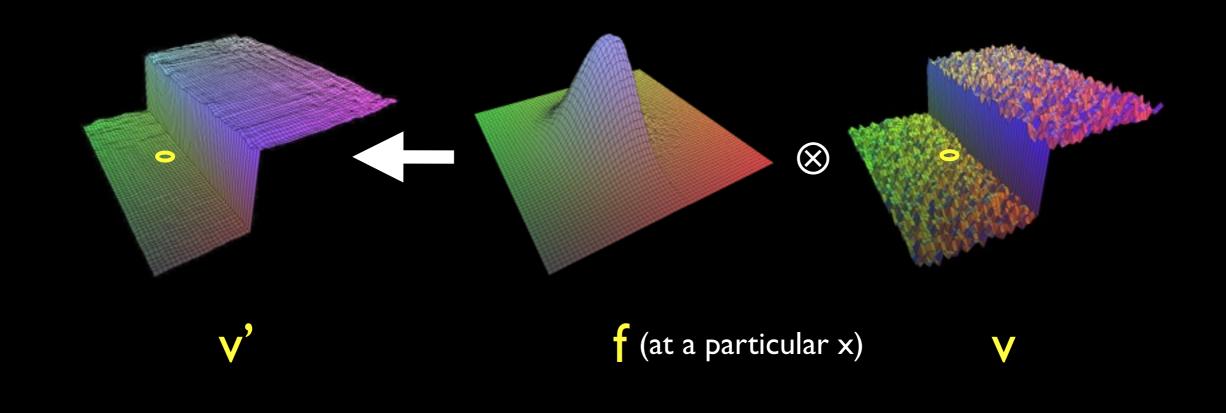
 $\mathbf{v}'(x) = \sum_{y} \mathbf{v}(y) \mathbf{f}(y-x) \mathbf{g}(\mathbf{v}(y)-\mathbf{v}(x))$ $\sum_{y} \mathbf{f}(y-x) \mathbf{g}(\mathbf{v}(y)-\mathbf{v}(x)) = \mathbf{K}(\mathbf{x})$ weight on spatial distance weight on color distance



•Averaging with neighbors.

• $\mathbf{v}'(x) = \sum_{y} \mathbf{v}(y) \mathbf{f}(y-x) \mathbf{g}(\mathbf{v}(y)-\mathbf{v}(x))$

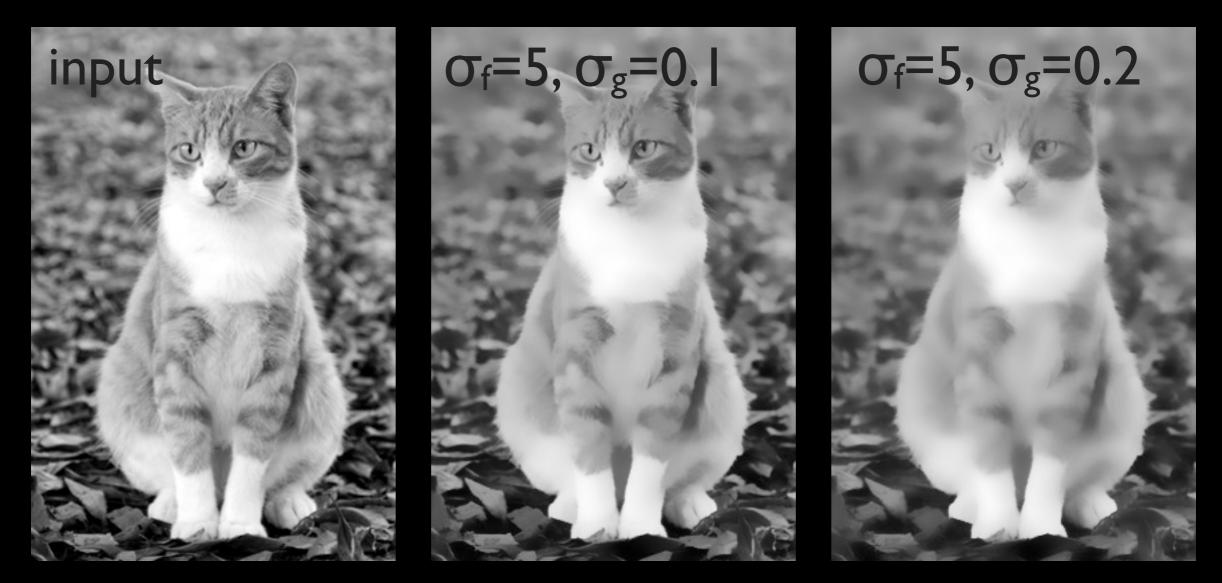
(at a particular x)



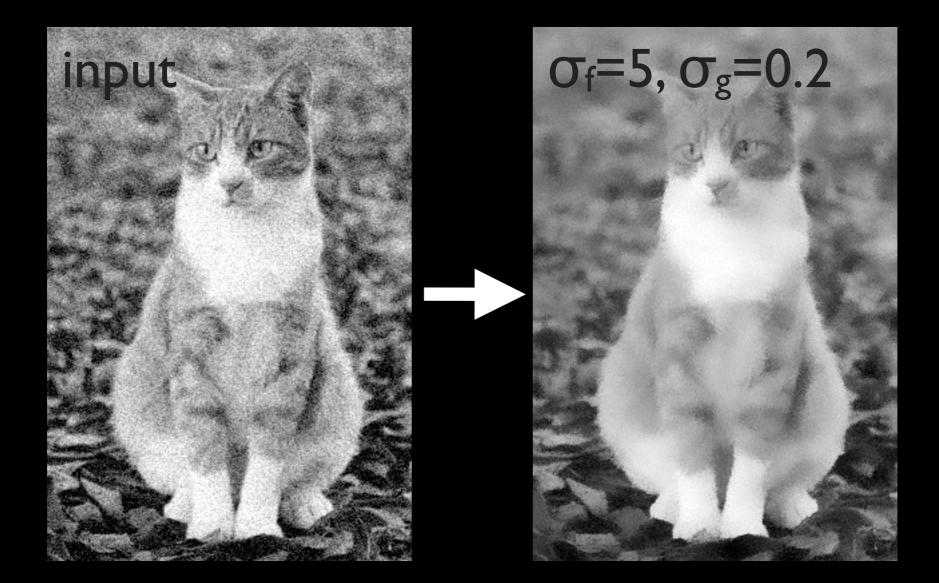
Bilateral Examples

• $\mathbf{v}'(x) = \sum'_{y} \mathbf{v}(y) \mathbf{f}(y-x) \mathbf{g}(\mathbf{v}(y)-\mathbf{v}(x))$

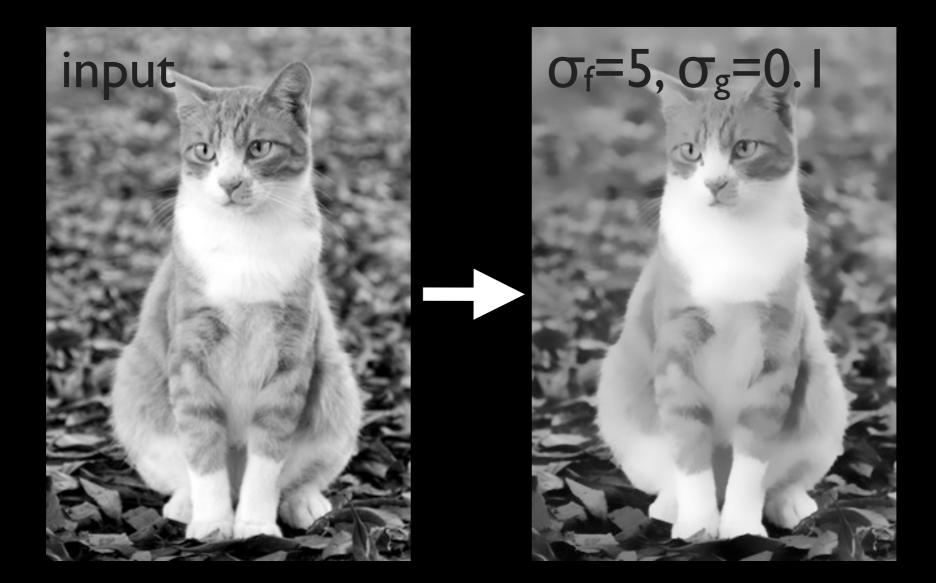
• The stdevs of f and g control filter strength.



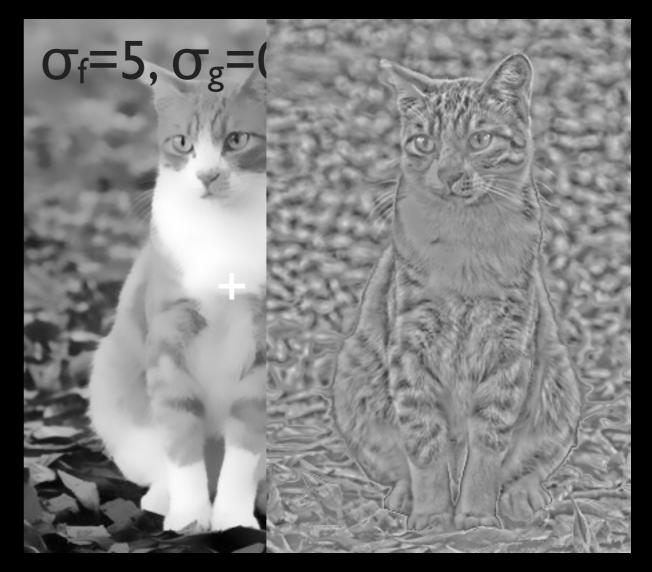
Light Denoising



Non-Photorealistic Rendering

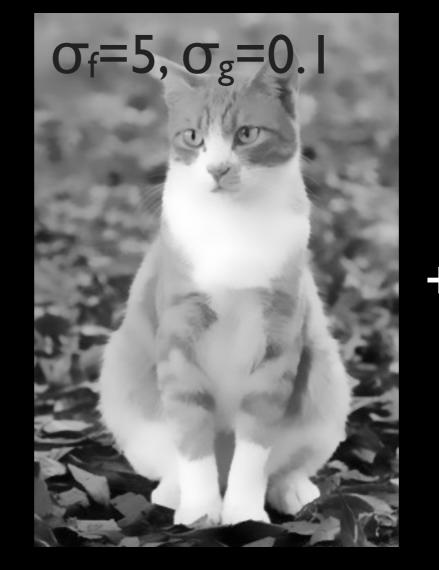


Detail Enhancement



input minus detraitait 3

Detail Enhancement



input minus detail

detail x 3

HDR Tone Mapping

gamma 0.6

Wednesday, February 1, 12

HDR Tone Mapping

input

coarse div by 3

log luminance

output

Caveats

• Current formulation:

NEIGHBOR WEIGHT₂ $\mathbf{v}'(x) = \sum_{y} \mathbf{v}(y) \mathbf{f}(y-x) \mathbf{g}(\mathbf{v}(y)-\mathbf{v}(x))$ NORMALIZED SUM WEIGHT

Naive implementation: $O(N^2)$

Truncate f: O(N σ_{f^2})

Compare to regular gaussian: $O(N \sigma_f)$ or $O(N \log N)$ separable

using FFT

Normalization

• Current formulation:

NEIGHBORWEIGHT2 $\mathbf{v}'(x) = \sum'_y \mathbf{v}(y) \mathbf{f}(y-x) \mathbf{g}(\mathbf{v}(y)-\mathbf{v}(x))$ NORMALIZED SUMWEIGHT1

Filter an image whose pixels are all I using the same weights. The resulting image = K(x)

Normalization

Current formulation:

NEIGHBORWEIGHT2 $\mathbf{v}'(x) = \sum'_y \mathbf{v}(y) \mathbf{f}(y-x) \mathbf{g}(\mathbf{v}(y)-\mathbf{v}(x))$ NORMALIZED SUMWEIGHT1

Equivalently, add a homogeneous channel to p. De-homogenize later.

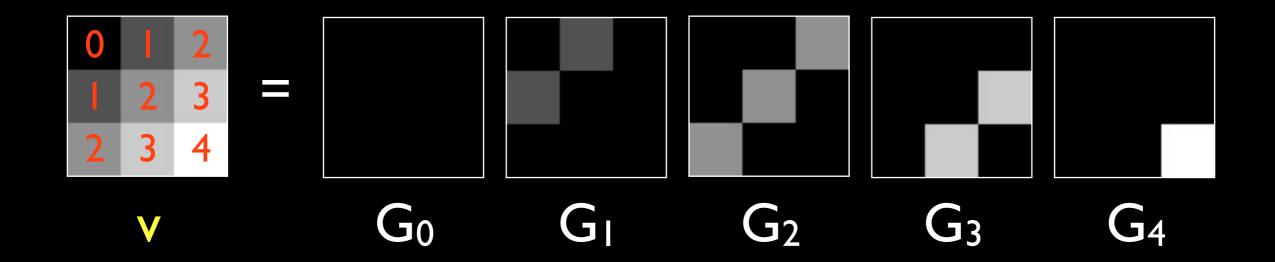
e.g. if p=(r,g,b), filter (r,g,b,l) instead.

If the result is (r',g',b',k), compute (r'/k,g'/k,b'/k).

(Porikli, CVPR 2008)

 $\mathbf{v}'(x) = \sum_{y} \mathbf{v}(y) \mathbf{f}(x-y) \mathbf{g}(\mathbf{v}(x)-\mathbf{v}(y))$

• Partition pixels by value: G_0 , G_1 , ..., G_{255} .



(Porikli, CVPR 2008)

 $\mathbf{v}'(x) = \sum'_{y} \mathbf{v}(y) \mathbf{f}(x-y) \mathbf{g}(\mathbf{v}(x)-\mathbf{v}(y))$

- Partition pixels by value: G_0 , G_1 , ..., G_{255} .
- Then, contribution from pixels in G_i $\mathbf{v}'(x) = \sum_i \sum_{y \in G_i} \mathbf{v}(y) \mathbf{f}(x-y) \mathbf{g}(\mathbf{v}(x)-\mathbf{v}(y))$
- = $\sum_{i} \sum_{y \in G_i} i f(x-y) g(v(x)-i)$ independent of y
 - $= \sum_{i} \left[\sum_{y \in G_{i}} f(x-y) \right] i g(v(x)-i)$

gaussian blur of mask

(Porikli, CVPR 2008)

•
$$\mathbf{v}'(x) = \sum_{i} \left[\sum_{y \in G_{i}} \mathbf{f}(x-y) \right] \mathbf{i} \mathbf{g}(\mathbf{v}(x)-\mathbf{i})$$

gaussian blur of mask weight

- For each pixel, do a weighted sum of the blurred masks.
- Runtime: O(256 N log N) Not impressive?

(Porikli, CVPR 2008)

• $\mathbf{v}'(x) = \sum_{i} \left[\sum_{y \in Gi} f(x-y) \right] i g(\mathbf{v}(x)-i)$ box filter of mask weight Box filter is O(1) amortized

- For each pixel, do a weighted sum of the blurred masks.
- Runtime: O(256 N)

(Porikli, CVPR 2008)

• $\mathbf{v}'(x) = \sum_{i} \left[\sum_{y \in G_{i}} f(x-y) \right] i g(\mathbf{v}(x)-i)$ box filter of mask weight Box filter is O(1) amortized

- For each pixel, do a weighted sum of the blurred masks.
- Runtime: O(32 N)

Using fewer groups G_i

Acceleration #2 (Durand and Dorsey, SIGGRAPH 2002) $\mathbf{v}'(x) = \sum_{y}' \mathbf{v}(y) \mathbf{f}(x-y) \mathbf{g}(\mathbf{v}(x)-\mathbf{v}(y))$

• Define $v_i(y) = v(y) g(i - v(y))$

- Apply gaussian blur to v_i to get w_i.
- Then,

 $\mathbf{v}'(x) = \sum_{y} \mathbf{f}(x-y) \mathbf{v}(y) \mathbf{g}(\mathbf{v}(x)-\mathbf{v}(y))$

• = $\sum'_{y} \mathbf{f}(x-y) \mathbf{v}_{\mathbf{v}(x)}(y)$

• $= \mathbf{w}_{\mathbf{v}(x)}(x)$

Acceleration #2 (Durand and Dorsey, SIGGRAPH 2002) $v'(x) = w_{v(x)}(x)$ where

w_i=f⊗v_i

• Need to compute each w_i.

- 256 gaussian blurs...,
 one for each i∈[0,255]
- In practice, can sample i to be of fewer values.
 - O(32 N log N)

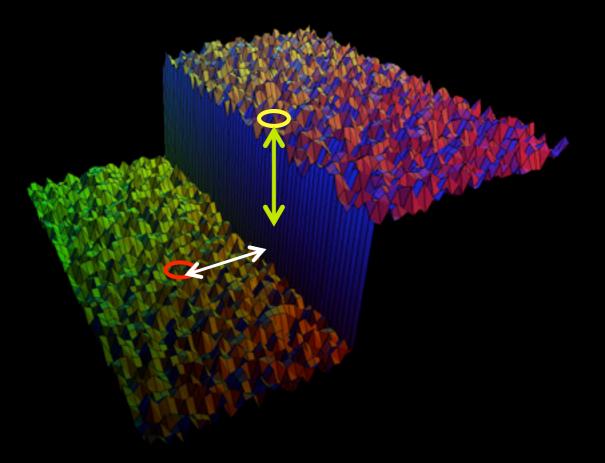
• Downsides?

- We're grouping pixels by intensity.
 This works for grayscale image (d=1)
- Runtime exponential in d.
 - The set of possible intensity vectors grow fast!

Let's Generalize

$\mathbf{v}'(x) = \sum'_{y} \mathbf{v}(y) \mathbf{f}(x-y) \mathbf{g}(\mathbf{v}(x)-\mathbf{v}(y))$

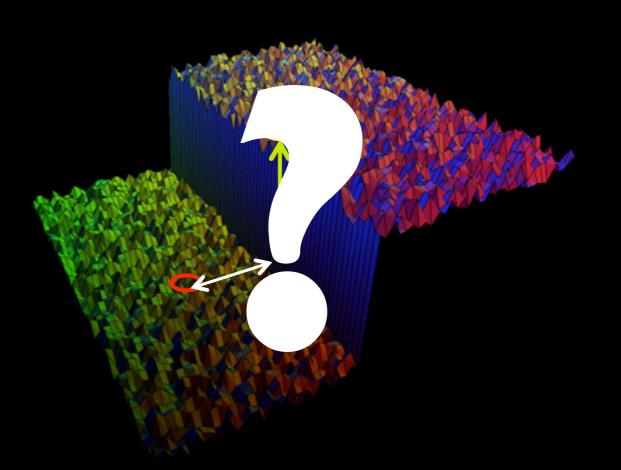
The weight is a 3D distance.



Let's Generalize

$\mathbf{v}'(x) = \sum'_{y} \mathbf{v}(y) \mathbf{f}(\mathbf{p}(x) - \mathbf{p}(y))$

The weight is a 3D distance.



positions in some arbitrary space

Examples

 $\mathbf{v}'(x) = \sum'_{y} \mathbf{v}(y) \mathbf{f}(\underline{\mathbf{p}(x)} - \underline{\mathbf{p}(y)})$

• Grayscale bilateral:

- $v(x,y) = \{I_{x,y}\}$
- $p(x,y) = \{x, y, I_{x,y}\}$
- Color bilateral
 - $v(x,y) = \{R_{x,y}, G_{x,y}, B_{x,y}\}$
 - $p(x,y) = \{x, y, R_{x,y}, G_{x,y}, B_{x,y}\}$

positions in

some arbitrary

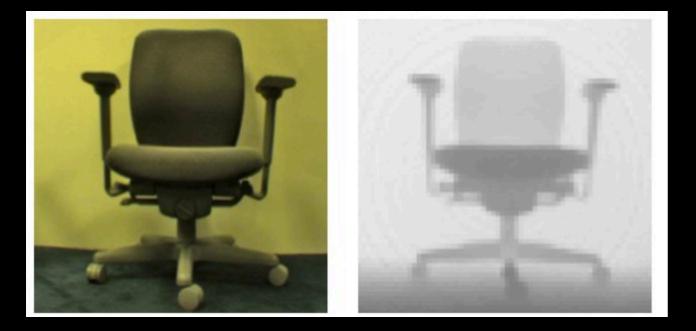
space

Joint Bilateral Filtering $\mathbf{v}'(x) = \sum_{y} \mathbf{v}(y) \mathbf{f}(\mathbf{p}(x) - \mathbf{p}(y))$

 There is no reason for which v and p should use the same RGB values. positions in some arbitrary space

- $v(x,y) = \{ R'_{x,y}, G'_{x,y}, B'_{x,y} \}$
- $p(x,y) = \{x, y, R^{2}_{x,y}, G^{2}_{x,y}, B^{2}_{x,y}\}$
- Blur an image while respecting edges in another image!

Sensor Fusion



Scene Coarse Image Depthmap P V

Wednesday, February 1, 12

Sensor Fusion

Scene Image D

range data at frame

a antenna alta hana da kana al antenna da kana da kana antenna antenna antenna.

Sparse Depthmap

Selection Propagation

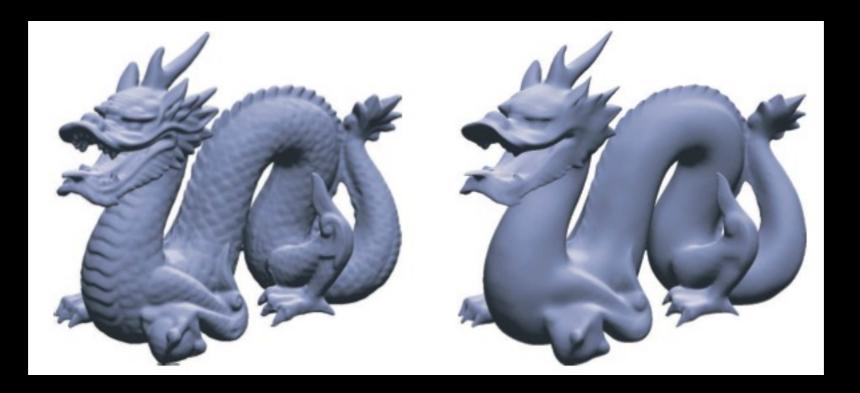
http://www.youtube.com/watch?v=e7kLRIIwHPc&t=3m36s

p : input image
v : map of (sparse) user strokes

Flash-No-Flash Denoising

Flash	No-Flash Image		
Image			
Ρ	V		

Mesh Smoothing



Input Mesh

Output Mesh

p is a local descriptor of each vertex

Non-Local Means Denoising

Input

V

Output v'

p is a local descriptor of the patch around each pixel

Wednesday, February 1, 12

Acceleration #3 and on $\mathbf{v}'(x) = \sum_{y} \mathbf{v}(y) f(\mathbf{p}(x) - \mathbf{p}(y))$

• Let's think about this in a different way.

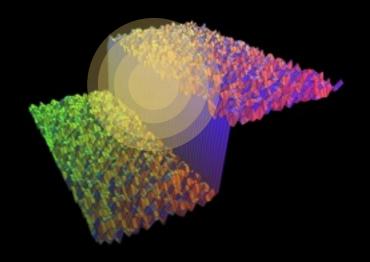
 We have a high dimensional signal v that lives in the space of p.

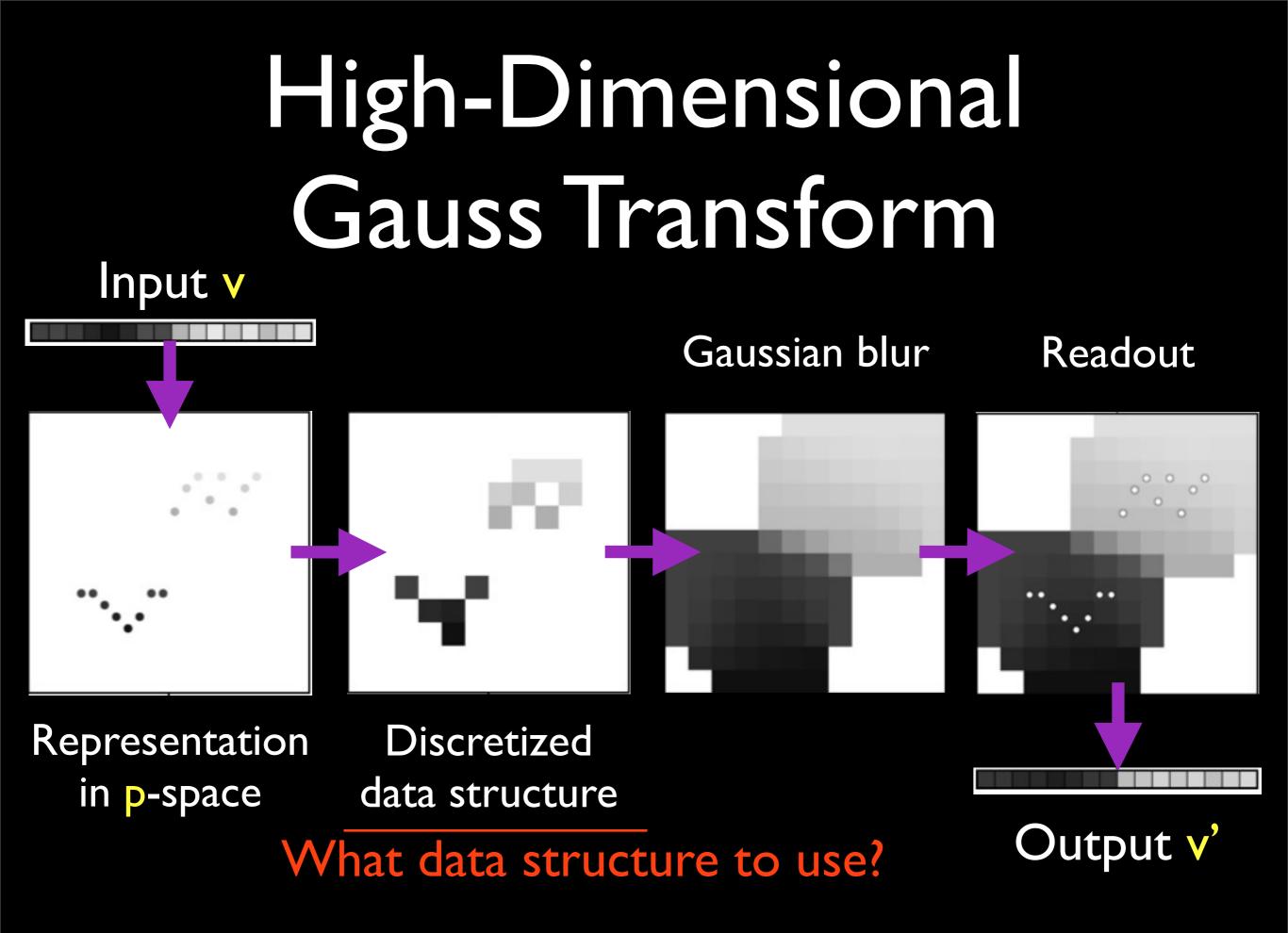
This is a linear filter in this space! $v(p^{-1}(X)) = \sum' v(p^{-1}(Y)) f(X - Y)$ Take $v \cdot p^{-1}$ and do a gaussian blur! High-Dimensional Gauss Transform $\mathbf{v}'(x) = \sum_{y} \mathbf{v}(y) \mathbf{f}(\mathbf{p}(x) - \mathbf{p}(y))$

 $\hat{v}_i = \sum e^{-|p_i - p_j|^2/2} v_i$

High-Dimensional Gauss Transform

- Take a high-dimensional signal.
- Put it into a data structure.
- Perform a Gaussian blur really fast.
- Read out its values.





Wednesday, February 1, 12

Explicitly represent positionspace

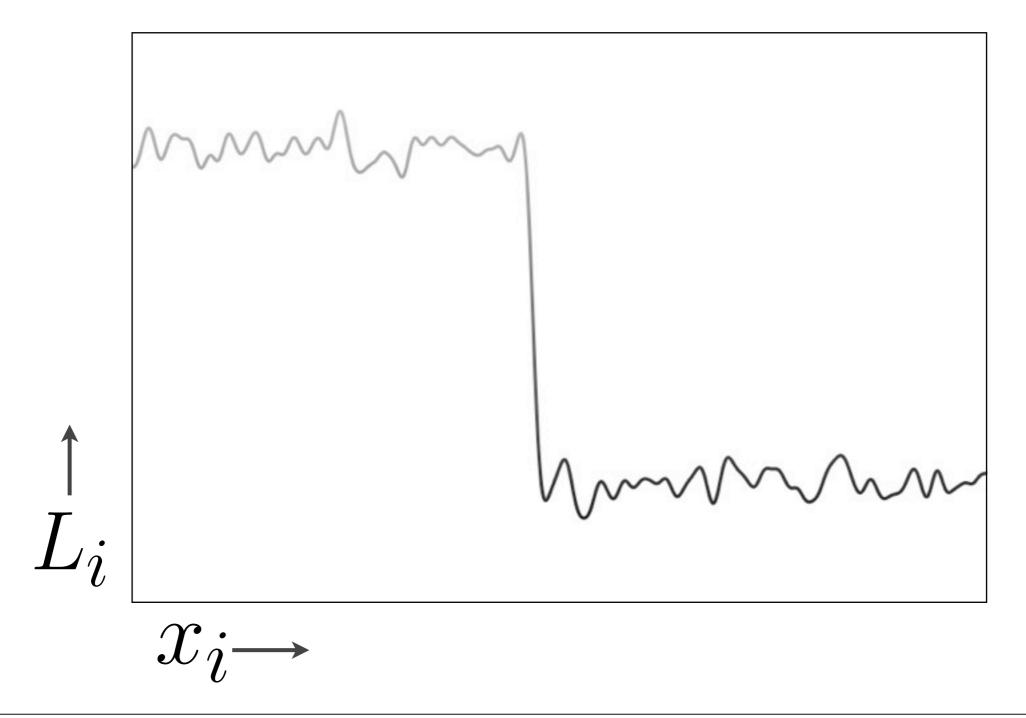
 Consider a bilateral filter of this 1D grayscale signal

 $p_i = \begin{bmatrix} x_i \ L_i \end{bmatrix} \quad v_i = \begin{bmatrix} L_i \ 1 \end{bmatrix}$

Slides stolen from Andrew Adams

Splat -> Blur -> Slice

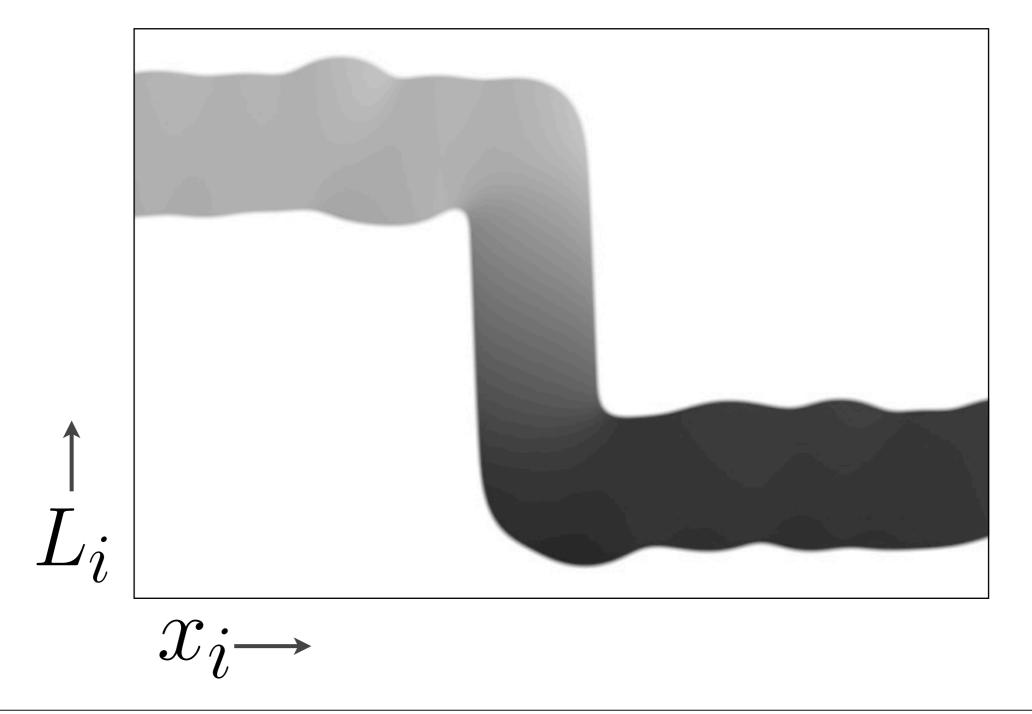
Embed the signal in position-space



50

Splat -> Blur -> Slice

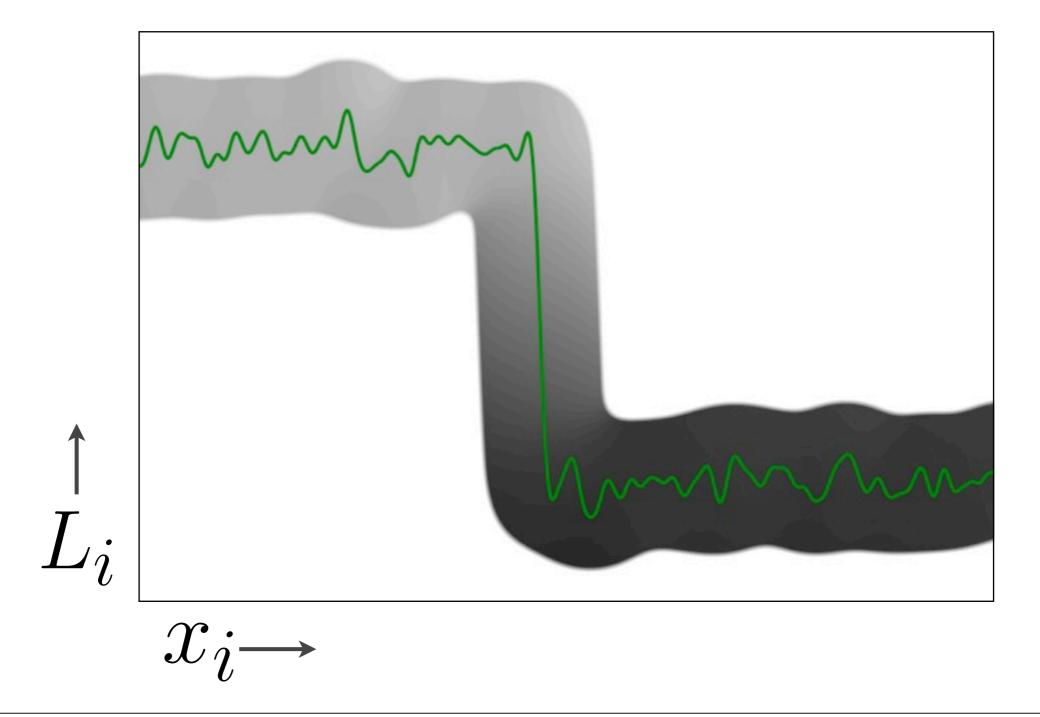
• Perform a Gaussian blur in that space



51

Splat -> Blur -> Slice

- Sample the space at positions p_i



52

The Result

• We've smoothed the data without losing the edge

How do we represent the space?

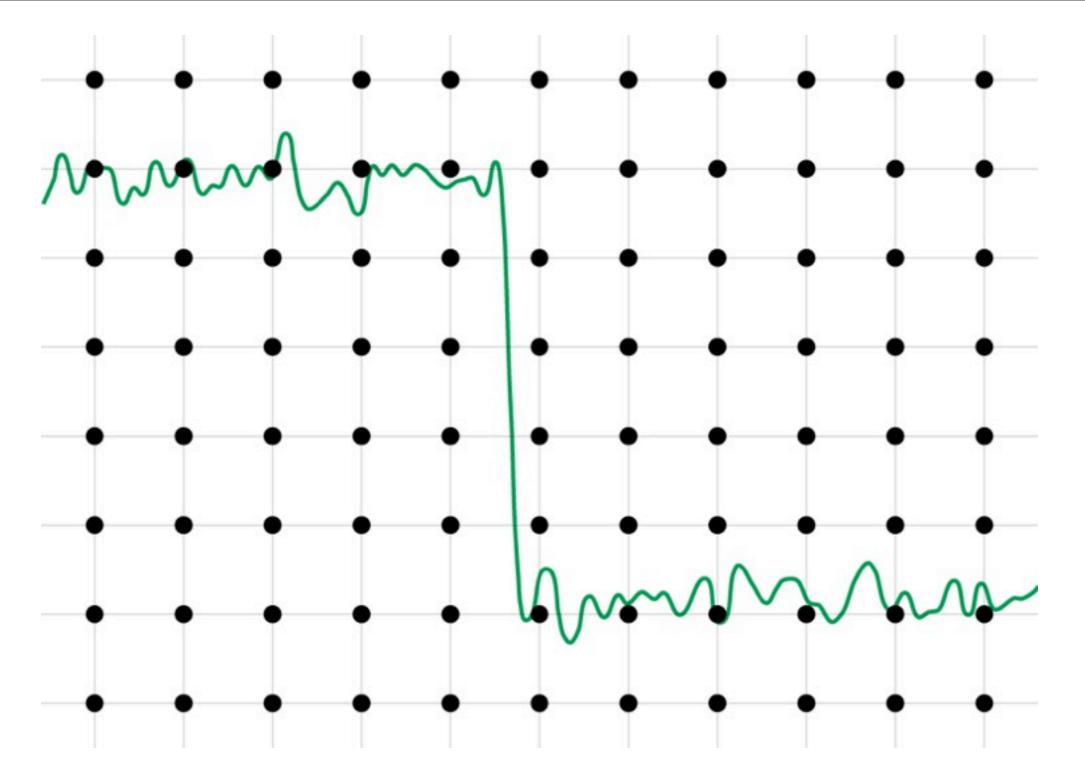
mm

mm

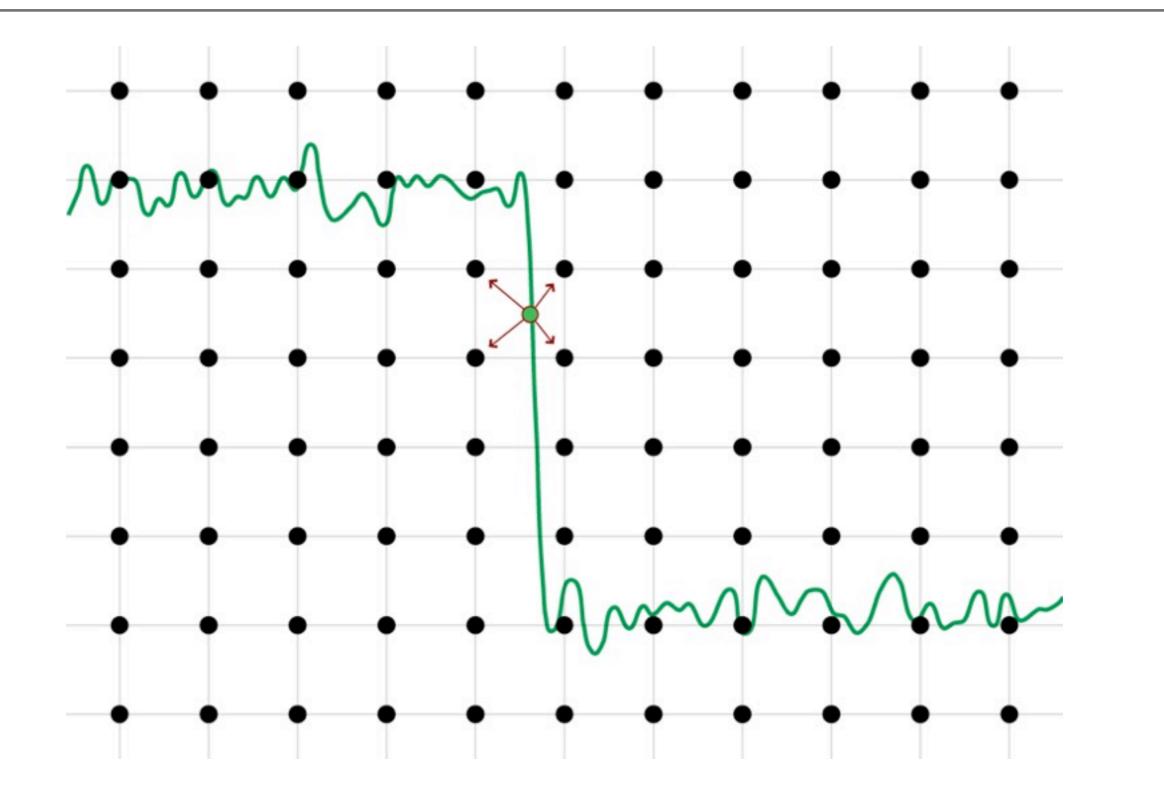
54

Wednesday, February 1, 12

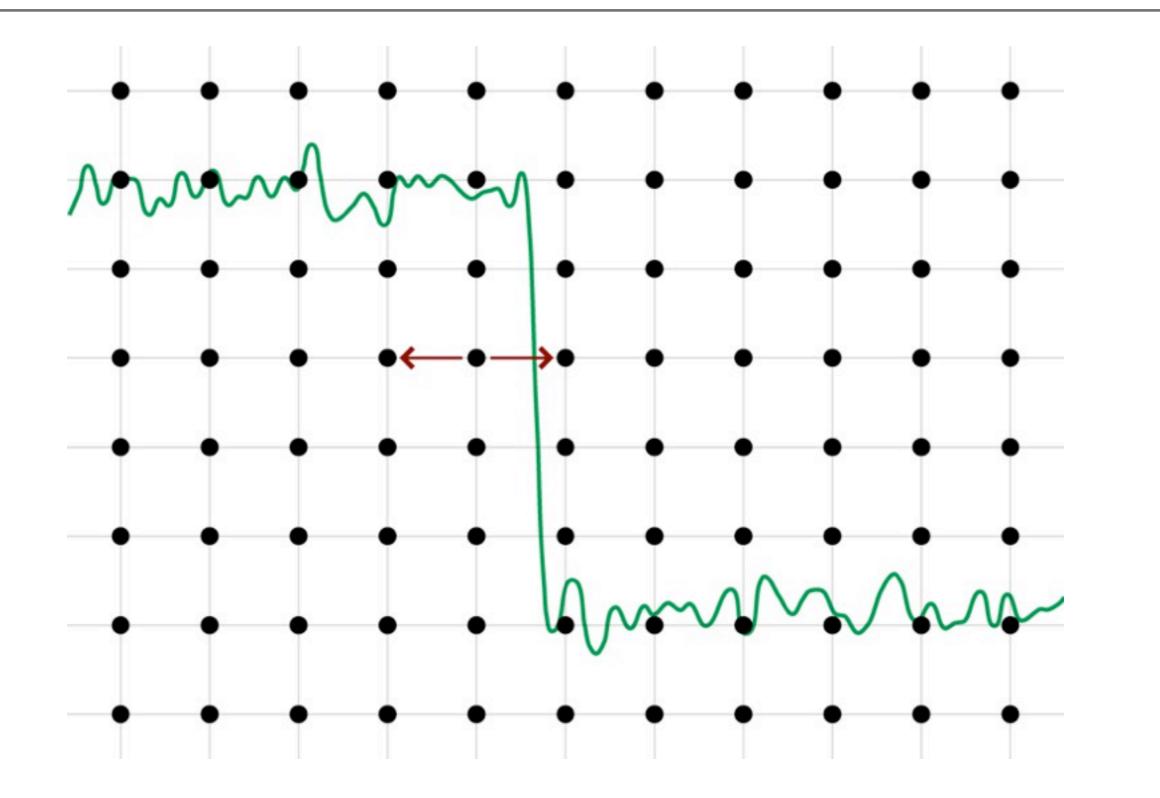
With a grid (Acceleration #3) [Paris and Durand, 2006]



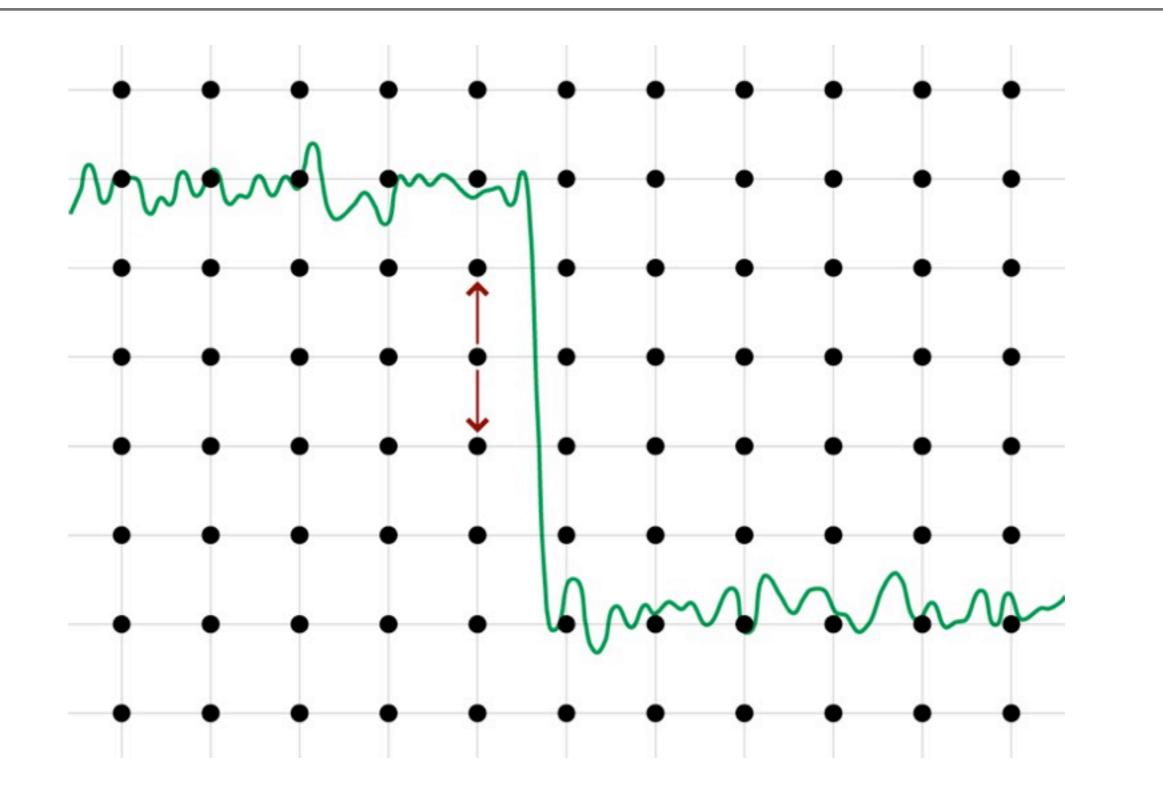
With a grid: Splat



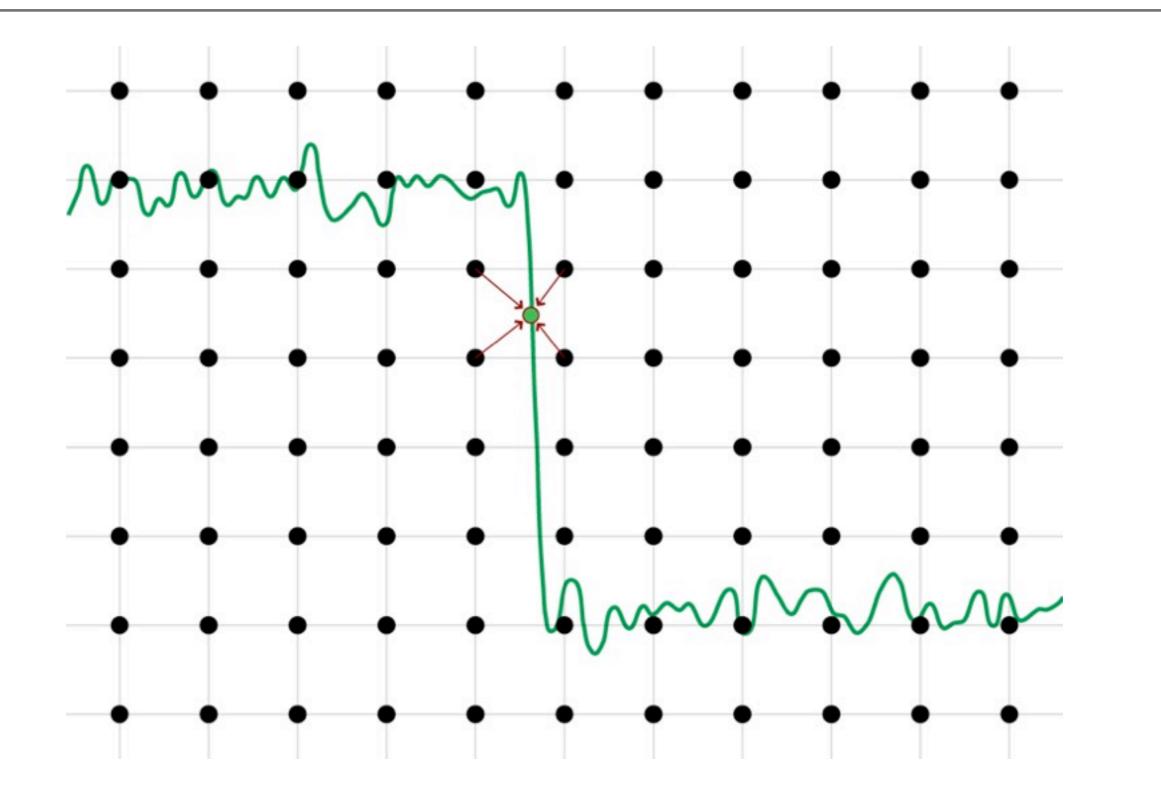
With a grid: Blur



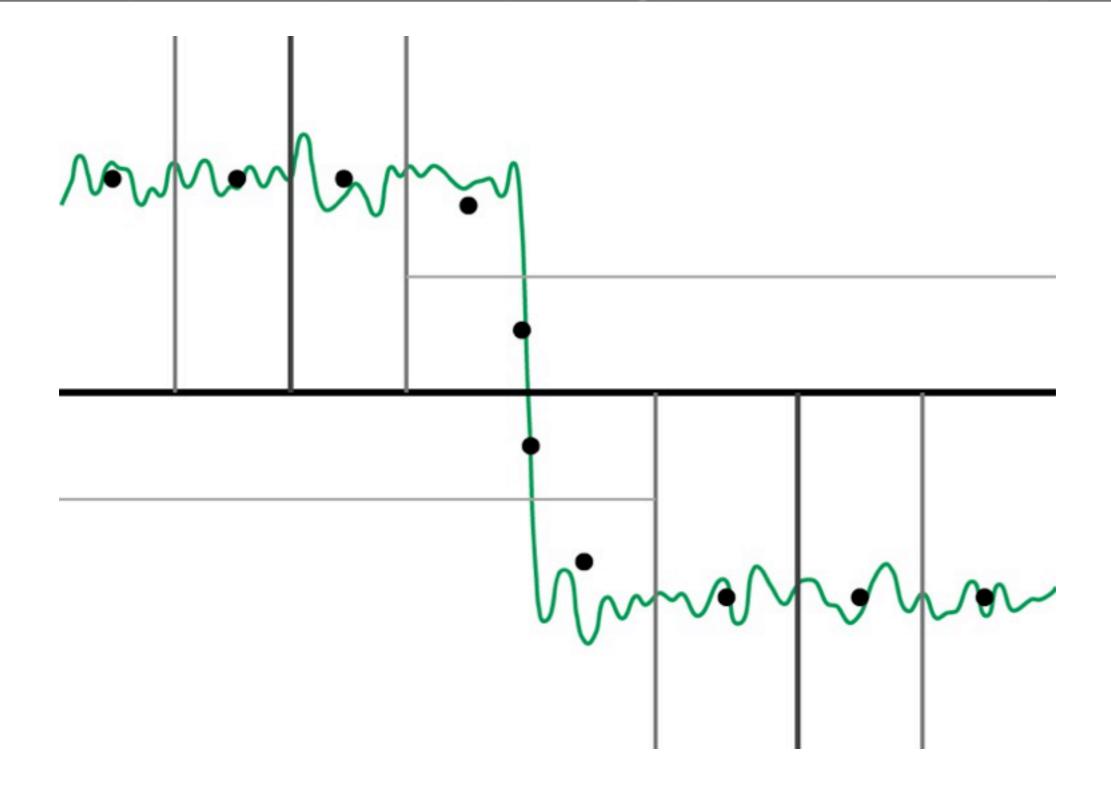
With a grid: Blur



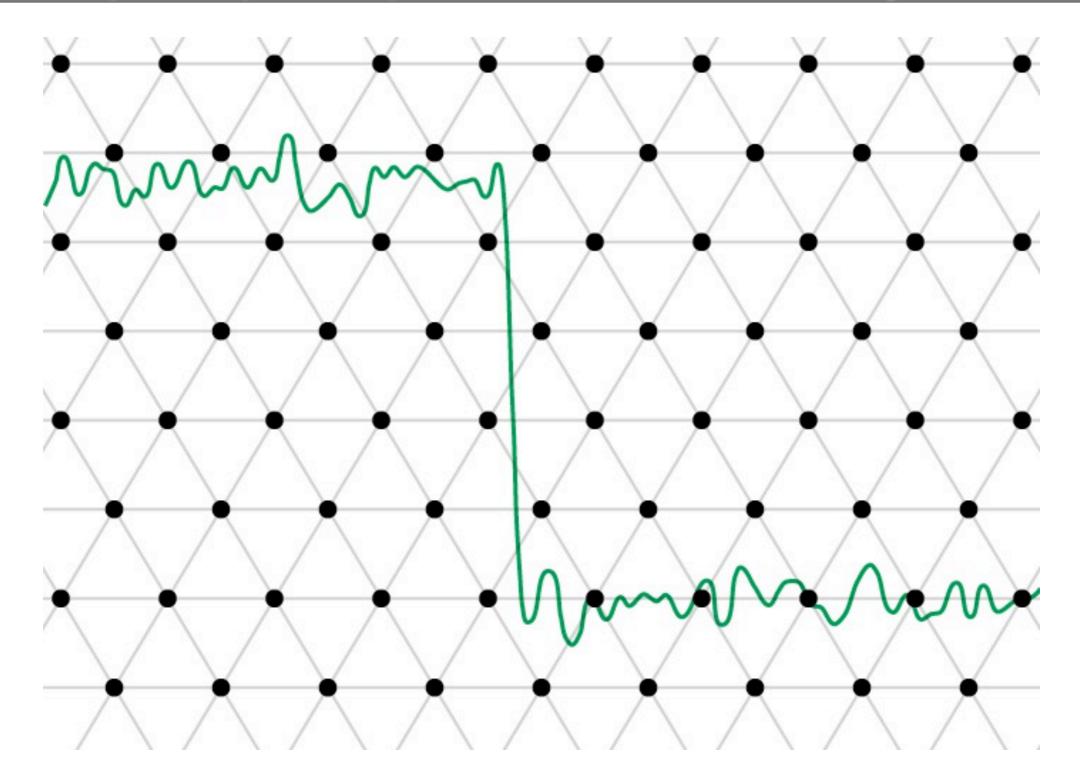
With a grid: Slice



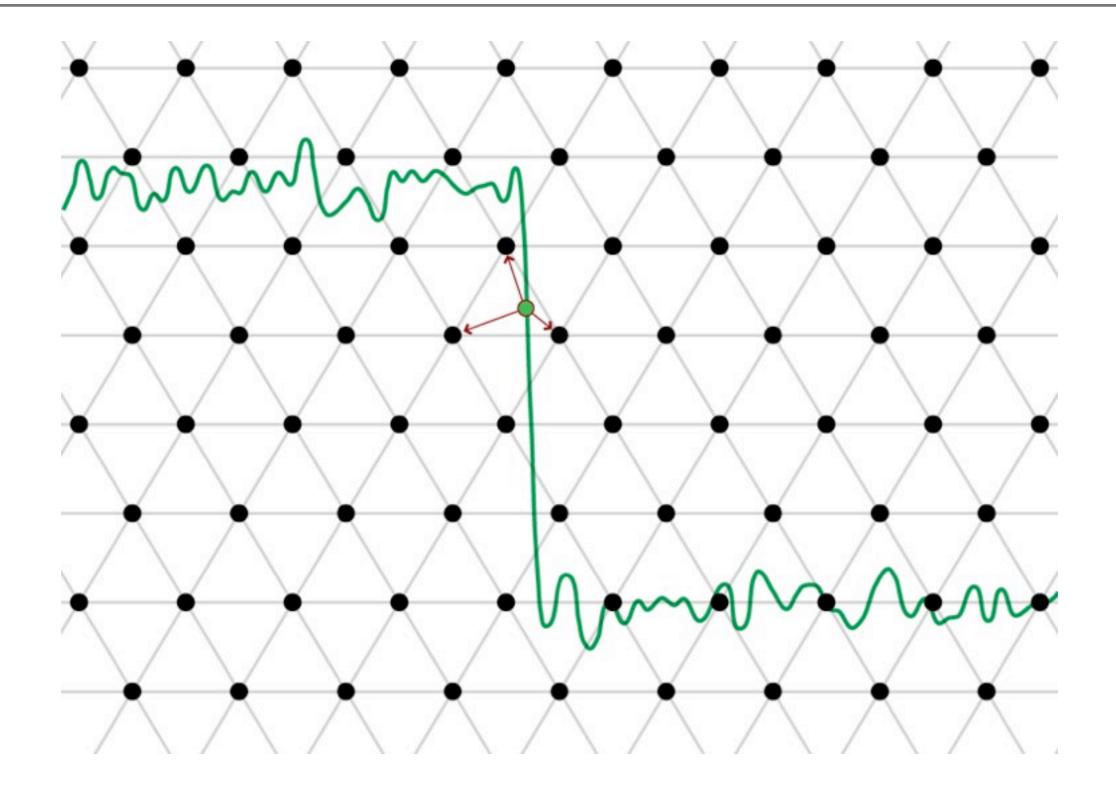
With a kd-tree (Acceleration #4) [Adams, Gelfand, Dolson, Levoy, SIGGRAPH 2009]



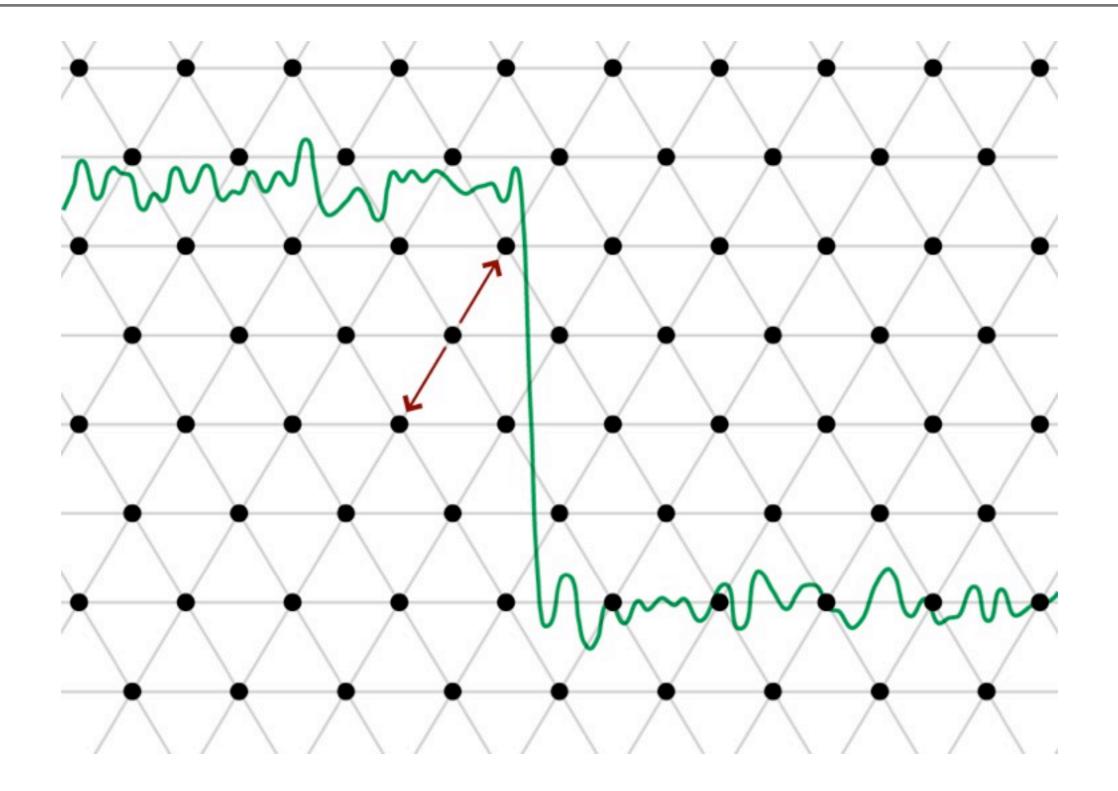
With a lattice (Acceleration #5) [Adams, Baek, Davis, EUROGRAPHICS 2010]



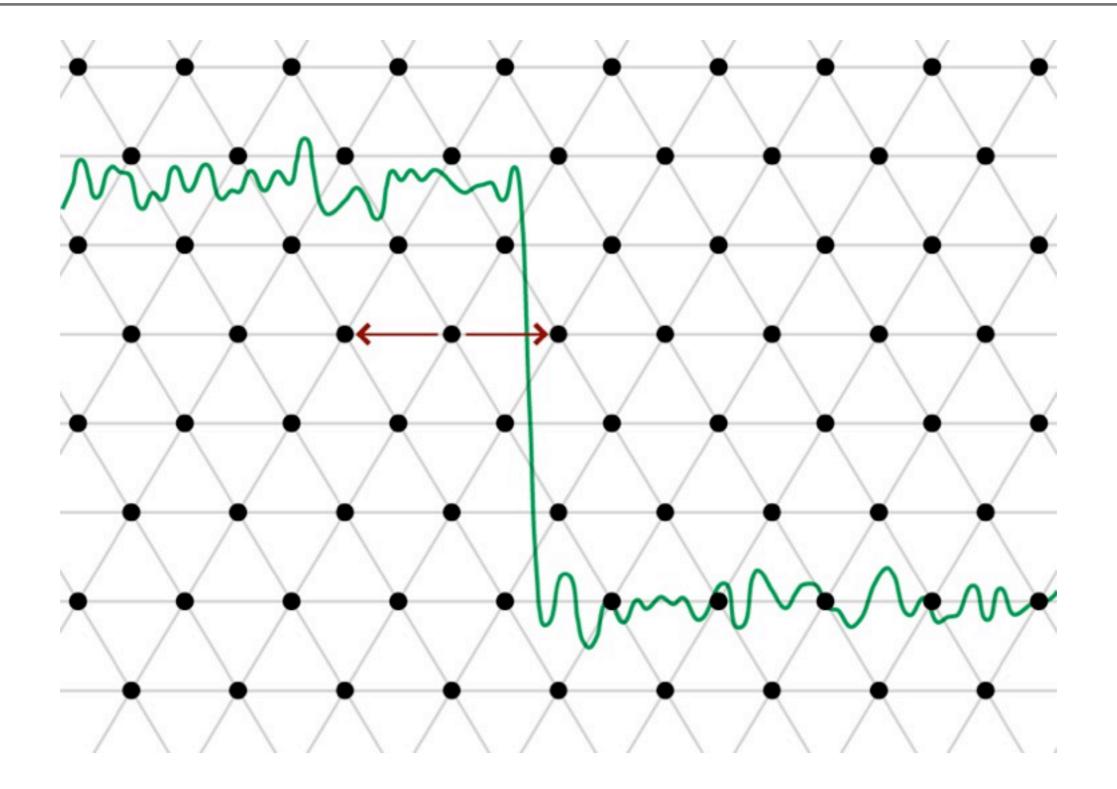
With a lattice: Splat



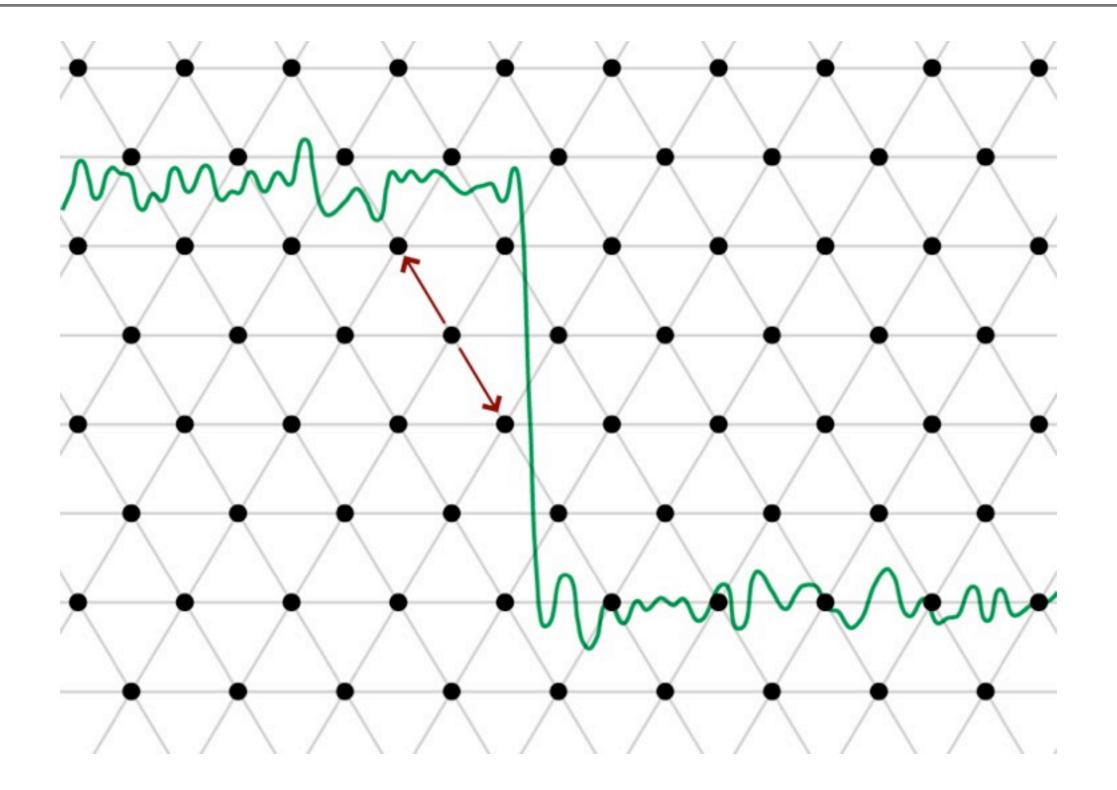
With a lattice: Blur



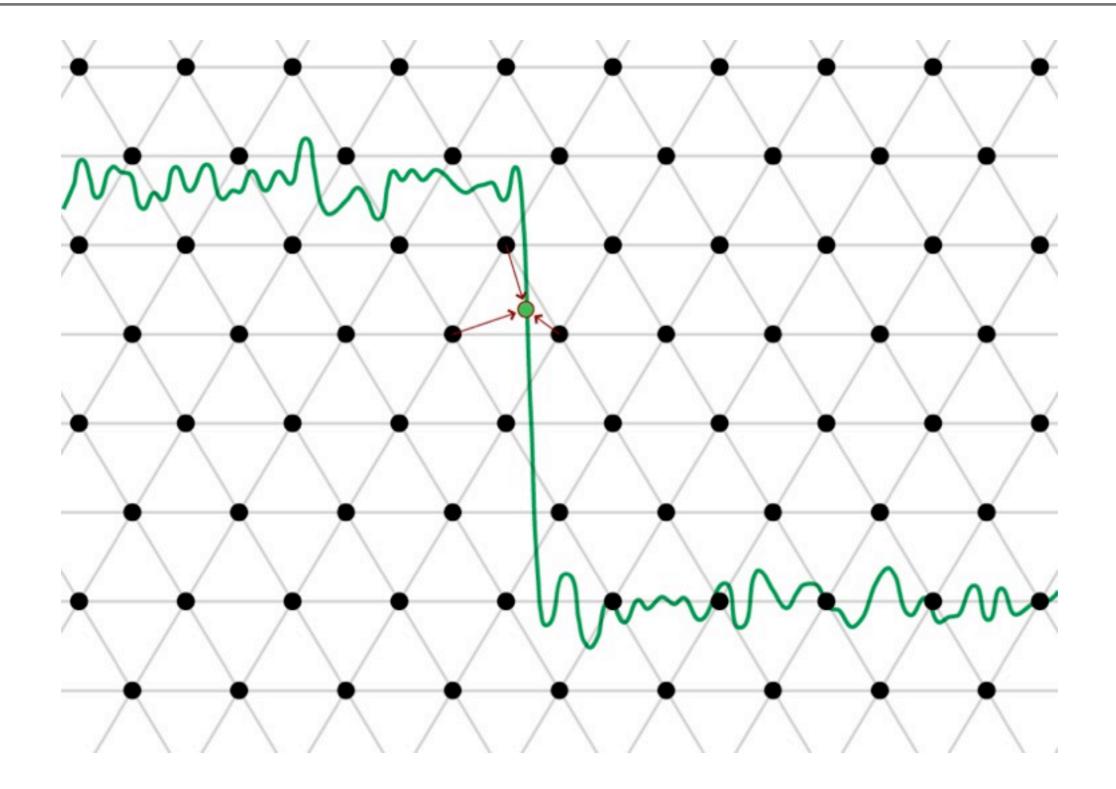
With a lattice: Blur



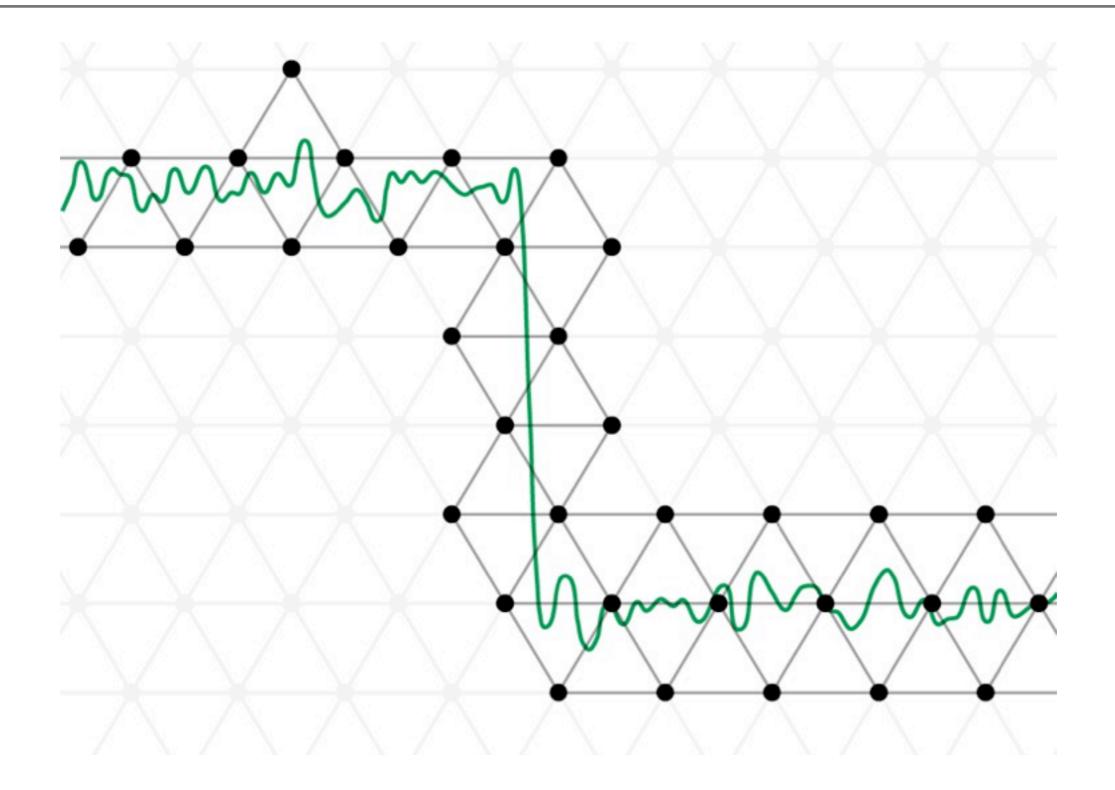
With a lattice: Blur



With a lattice: Slice



With a lattice



Recap

- Take a bilateral filter problem.
- Rewrite as a high-dimensional signal.
- Put it into a data structure.
- Perform a Gaussian blur really fast.
- Read out its values.

Comparisons

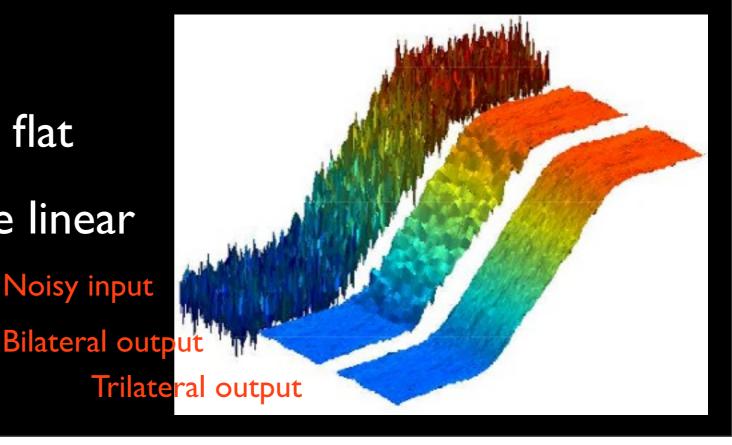
Method	Runtime	d>1?	Can handle sparse data?	Joint Bilateral Filter?
Porikli '08	O(N log N)	No	No	No
Dorsey '02	O(N log N)	No	No	No
Grid	O(2 ^d N)	Yes	Poorly	Yes
KD-tree	O(d N log N)	Yes	Yes	Yes
Lattice	O(d ² N)	Yes	Yes	Yes

Other Filters

- TONS of other edge-aware filters
 - A paper or two at every SIGGRAPH

Trilateral Filter

- Bilateral filter penalizes deviation from pixel value
 - e.g. p(y) f(p(y) p(x))
- Penalize deviation from the tangent at p(x)
 - e.g. $(p(y) \partial p(x)(y-x)) f(p(y) p(x) \partial p(x)(y-x))$
- Intuition:
 - Bilateral = piecewise flat
 - Trilateral = piecewise linear
- Theoretically better, but slower.



Weighted Least-Squares Filter

- Express smoothing as an optimization
 - Given image v(x), find v'(x) that minimizes:
 - $\lambda_1 \sum_{\mathbf{x}} [\mathbf{v}'(\mathbf{x}) \mathbf{v}(\mathbf{x})]^2 + \lambda_2 \sum_{\mathbf{x}} w_{\mathbf{x}} [\partial \mathbf{v}' \partial \mathbf{x}(\mathbf{x})]^2$

data term smoothness term

• v' should be similar to input, but should not have high gradients where v does not.

Weighted Least-Squares Filter

• By choosing w_x wisely, one can selectively suppress edges at different scale. (Similar to σ_f , σ_g in bilateral)

Aside: Image Pyramid

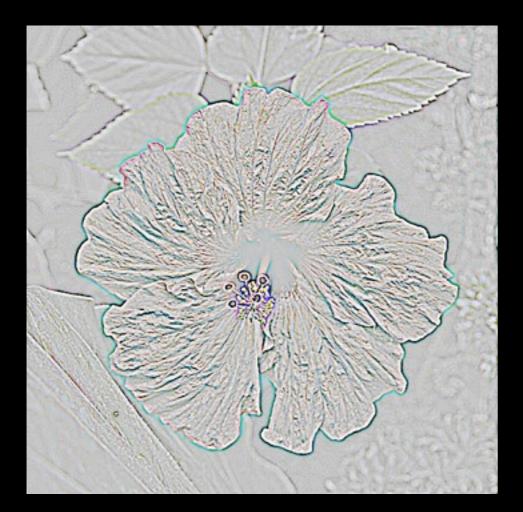
level 2

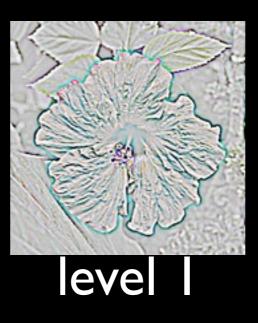
level 3 (residual)

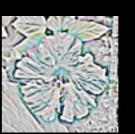
level 0

Wednesday, February 1, 12

Aside: Image Pyramid







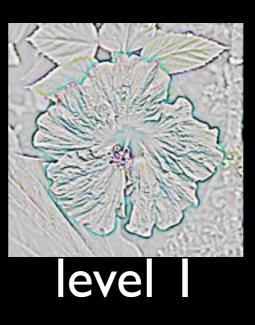
level 2

level 3 (residual)

level 0 Each level contains certain frequency details.

Aside: Image Pyramid

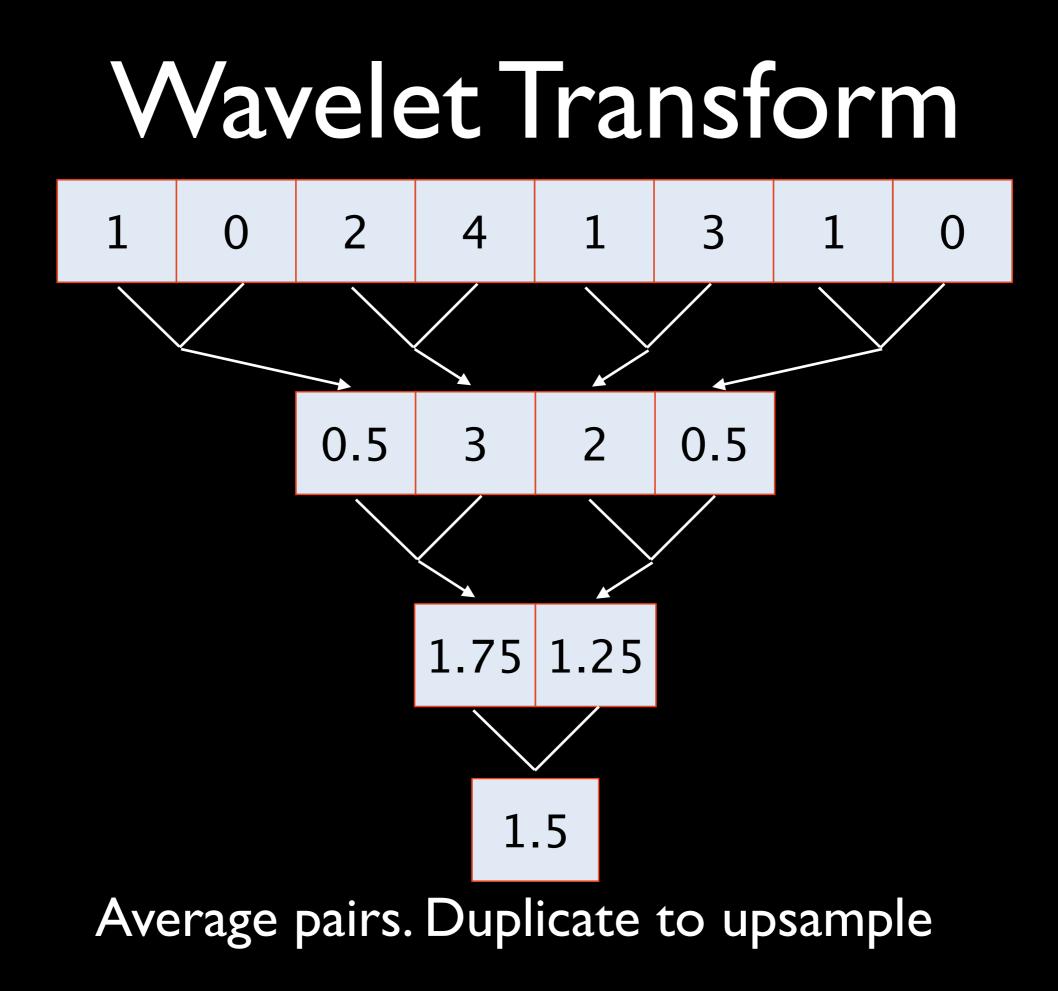




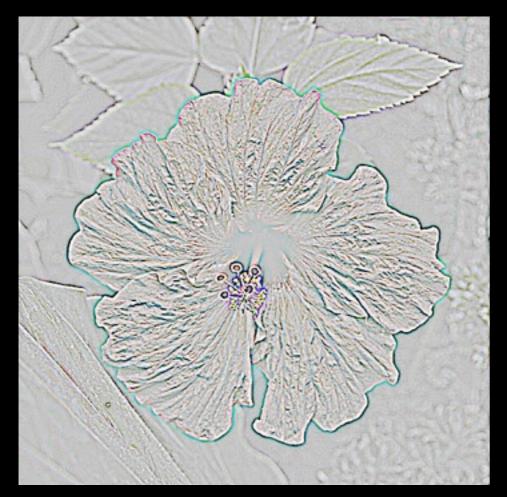
level 2 level 3 (residual)

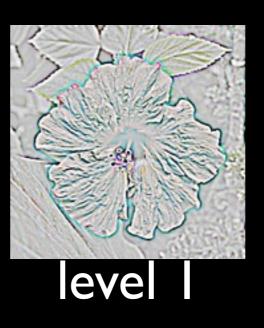
level 0

Question: How to downsample / upsample?



Laplacian Pyramid





level 2 level 3 (residual)

level 0

To downsample, Gaussian blur and subsample. To upsample, insert zeros and blur.

Image Pyramid for Detail Magnification

Image Pyramid for Detail Magnification

• Unsuitable for filtering?

- Details of different "scale" or "frequency" are not nicely separated into different levels.
 - Almost, but not quite.

Edge-Avoiding Wavelets

- Modify wavelet transform.
 - Instead of using the simple coefficients, make the coefficients depend on edge strength.

Edge-Avoiding Wavelets

Local Laplacian Filter

- Use regular laplacian pyramid.
- Generate a new laplacian pyramid by filtering the coefficients in a clever way.

Local Laplacian Filter

Wednesday, February 1, 12

Summary

- Edge-aware image processing is a popular topic.
 - Bilateral filter
 - Many acceleration schemes
 - Many generalizations
 - Many applications
 - Other filters.