$\oplus \ominus$ Computational ©๑ Photography Bilateral Filtering+

Jongmin Baek
CS 478 Lecture
Feb I, 2012

Announcements

- Assignment I grading
- Are you signed up?
- Assignment 2
- Due $2 / 8$
- Term project proposal
- Due 2/I3
- Must have had project conference. Sign up.

Overview

- Bilateral filtering
- Theory and Applications
- Generalizations
- Other edge-aware filters

Bilateral Filtering

- A very popular "edge-aware" filter
- Blurs a signal without destroying structure

Blurring I0I

- For each pixel v, mix it with its neighbors.
- Typically a convolution with a kernel f:

NEIGHBOR

$$
\begin{array}{cc}
v^{\prime}\left(x_{1}, x_{2}\right)=\sum_{y_{1}, y_{2}} v\left(y_{1}, y_{2}\right) f\left(y_{1}-x_{1}, y_{2}-x_{2}\right) . \\
\text { WEIGHT }
\end{array}
$$

- Kernel is typically normalized (sum to one)

Box Filter

$$
v^{\prime}\left(x_{1}, x_{2}\right)=\sum_{y_{1}, y_{2}} v\left(y_{1}, y_{2}\right) f\left(y_{1}-x_{1}, y_{2}-x_{2}\right) .
$$

- Box filter of size w \mathbf{x} h

$$
\begin{array}{cc}
f(a, b)=\mid /(w h), & \text { if }|a| \leq w / 2 \text { and }|b| \leq h / 2, \\
0, & \text { otherwise. }
\end{array}
$$

Box Filter

$v^{\prime}\left(x_{1}, x_{2}\right)=\sum_{y_{1}, y_{2}} v\left(y_{1}, y_{2}\right) f\left(y_{1}-x_{1}, y_{2}-x_{2}\right)$.

- Box filter of size $w \times h$

Gaussian Filter

$v^{\prime}\left(x_{1}, x_{2}\right)=\sum_{y_{1}, y_{2}} v\left(y_{1}, y_{2}\right) f\left(y_{1}-x_{1}, y_{2}-x_{2}\right)$.

- Gaussian of stdev 5

$$
f(a, b)=\exp \left(-\left[a^{2}+b^{2}\right] / / 0\right) /(50 \pi)^{0.5}
$$

Gaussian Filter

$v^{\prime}\left(x_{1}, x_{2}\right)=\sum_{y_{1}, y_{2}} v\left(y_{1}, y_{2}\right) f\left(y_{1}-x_{1}, y_{2}-x_{2}\right)$.

- Gaussian of stdev 5

Box vs. Gaussian

Box

Gaussian

Box vs. Gaussian

GaRisxian

Gaussian on Edges

- Averaging with neighbors.
- Weights decay as spatial distance grows.
- $v^{\prime}(x)=\sum_{y} v(y) f(y-x)$.

v'
f

Gaussian on Edges

- Why do we average with neighbors?
- Trying to get a better estimate of local radiance
- If so, why not average with neighbors that are more likely to have similar radiance?

Bilateral filtering

- Averaging with neighbors.
- Weights decay as spatial distance grows.
- Weights decay as color distance grows.

$$
\begin{aligned}
& \qquad v^{\prime}(x)=\sum_{y} v(y) f(y-x) g(v(y)-v(x)) \\
& \Sigma_{y} f((v-x) g(v(y)-v(x))= \\
& \text { weight on spatial distance } \\
& \text { weight on color distance }
\end{aligned}
$$

Bilateral on Edges

- Averaging with neighbors.

$$
\text { - } v^{\prime}(x)=\sum_{y}^{\prime} v(y) f(y-x) g(v(y)-v(x))
$$

(at a particular x)
v'

f(at a particular x)
v

Bilateral on Edges

- Averaging with neighbors.

$$
\text { - } v^{\prime}(x)=\sum_{y}^{\prime} v(y) f(y-x) g(v(y)-v(x))
$$

v'

Bilateral Examples

- $v^{\prime}(x)=\sum_{y}^{\prime} v(y) f(y-x) g(v(y)-v(x))$
- The stdevs of f and g control filter strength.

$$
\sigma_{\mathrm{f}}=5, \sigma_{\mathrm{g}}=0.2
$$

Applications

Light Denoising

Applications

Non-Photorealistic Rendering

Applications

Detail Enhancement

input minus detriteitaid 3

Applications

Detail Enhancement

$$
\sigma_{\mathrm{f}}=5, \sigma_{8}=0.1
$$

II

$+$
input minus detail

detail $\times 3$

Applications
 HDR Tone Mapping

gamma 0.6

Applications

HDR Tone Mapping

input
log luminance

detail

output

Caveats

- Current formulation:

$$
\begin{gathered}
\text { NEIGHBOR WEIGHT } \\
\mathrm{v}^{\prime}(x)=\sum_{y} \mathrm{v}(y) f(y-x) g(\mathrm{v}(\mathrm{y})-\mathrm{v}(x)) \\
\text { NORMALIZED SUM } \quad \text { WEIGHT }
\end{gathered}
$$

Naive implementation: $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Truncate f: $\mathrm{O}\left(\mathrm{N} \mathrm{Of}_{\mathrm{f}}{ }^{2}\right)$

Compare to regular gaussian: $\mathrm{O}\left(\mathbf{N} \sigma_{f}\right)$ or $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

Normalization

- Current formulation:

$$
\begin{gathered}
\text { NEIGHBOR WEIGHT } \\
v^{\prime}(x)=\sum_{y} v(y) f(y-x) g(v(y)-v(x)) \\
\text { NORMALIZED SUM } \quad \text { WEIGHT }_{1}
\end{gathered}
$$

Filter an image whose pixels are all I using the same weights.

The resulting image $=K(x)$

Normalization

- Current formulation:

$$
\begin{gathered}
\text { NEIGHBOR WEIGHT } \\
\mathrm{v}^{\prime}(x)=\sum_{y}^{\prime} \mathrm{v}(y) f(y-x) g(\mathrm{v}(\mathrm{y})-\mathrm{v}(\mathrm{x})) \\
\text { NORMALIZED SUM } \text { WEIGHT }_{\text {I }}
\end{gathered}
$$

Equivalently, add a homogeneous channel to p.
De-homogenize later.
e.g. if $p=(r, g, b)$, filter (r, g, b, l) instead.

If the result is ($\left.r^{\prime}, g^{\prime}, b^{\prime}, k\right)$, compute ($\left.r^{\prime} / k, g^{\prime} / k, b^{\prime} / k\right)$.

Acceleration \#|

 (Porikli, CVPR 2008)$$
v^{\prime}(x)=\sum_{y} v(y) f(x-y) g(v(x)-v(y))
$$

- Partition pixels by value: $\mathrm{G}_{0}, \mathrm{G}_{\mathrm{l}}, \ldots, \mathrm{G}_{255}$.

Acceleration \#|

 (Porikli, CVPR 2008)$$
v^{\prime}(x)=\sum_{y} v(y) f(x-y) g(v(x)-v(y))
$$

- Partition pixels by value: $\mathrm{G}_{0}, \mathrm{G}_{1}, \ldots, \mathrm{G}_{255}$.
- Then, contribution from pixels in G_{i}

$$
v^{\prime}(x)=\sum_{i} \sum_{y \in G i} v(y) f(x-y) g(v(x)-v(y))
$$

$$
\begin{aligned}
& =\sum_{i} \sum_{y \in G i} \text { if } f(x-y) \underline{g(v(x)-i)} \begin{array}{c}
\text { independent } \\
\text { of } y
\end{array} \\
& =\sum_{i}\left[\sum_{y \in G i} f(x-y)\right] i g(v(x)-i)
\end{aligned}
$$

gaussian blur of mask

Acceleration \#| (Porikli, CVPR 2008)

$$
\text { - } v^{\prime}(x)=\sum_{\text {gaussian blur of mask }}\left[\sum_{y \in G i} f(x-y)\right] i \frac{g(v(x)-i)}{\text { weight }}
$$

- For each pixel, do a weighted sum of the blurred masks.
- Runtime: $\mathrm{O}(256 \mathrm{~N} \log \mathrm{~N})$

Not impressive?

Acceleration \#| (Porikli, CVPR 2008)

- $v^{\prime}(x)=\sum_{i}\left[\sum_{y \in G i} f(x-y)\right] i g(v(x)-i)$ box filter of mask weight Box filter is $\mathrm{O}(\mathrm{I})$ amortized
- For each pixel, do a weighted sum of the blurred masks.
- Runtime: $\mathrm{O}(256 \mathrm{~N})$

Acceleration \#| (Porikli, CVPR 2008)

- $v^{\prime}(x)=\sum_{i}\left[\sum_{y \in G i} f(x-y)\right] i g(v(x)-i)$ box filter of mask weight Box filter is $\mathrm{O}(\mathrm{I})$ amortized
- For each pixel, do a weighted sum of the blurred masks.
- Runtime: $\mathrm{O}(32 \mathrm{~N})$

Using fewer groups G_{i}

Acceleration \#2

(Durand and Dorsey, SIGGRAPH 2002)

$$
v^{\prime}(x)=\sum_{y}^{\prime} v(y) f(x-y) g(v(x)-v(y))
$$

- Define $\mathrm{v}_{\mathrm{i}}(\mathrm{y})=\mathrm{v}(\mathrm{y}) \mathrm{g}(\mathrm{i}-\mathrm{v}(\mathrm{y}))$
- Apply gaussian blur to v_{i} to get w_{i}.
- Then,

$$
\begin{aligned}
v^{\prime}(x) & =\sum_{y}^{\prime} f(x-y) v(y) g(v(x)-v(y)) \\
& =\sum_{y}^{\prime} f(x-y) v_{v(x)}(y) \\
& =w_{v(x)}(x)
\end{aligned}
$$

Acceleration \#2

(Durand and Dorsey, SIGGRAPH 2002)

$$
\begin{gathered}
v^{\prime}(x)=w_{v(x)}(x) \text { where } \\
w_{i}=f \otimes v_{i}
\end{gathered}
$$

- Need to compute each w_{i}.
- 256 gaussian blurs..., one for each $i \in[0,255]$
- In practice, can sample i to be of fewer values.
- $\mathrm{O}(32 \mathrm{~N} \log \mathrm{~N})$

Acceleration \#I,2

- Downsides?
- We're grouping pixels by intensity. This works for grayscale image ($\mathrm{d}=\mathrm{I}$)
- Runtime exponential in d.
- The set of possible intensity vectors grow fast!

Let's Generalize

$$
v^{\prime}(x)=\sum_{y}^{\prime} v(y) f(x-y) g(v(x)-v(y))
$$

The weight is a 3D distance.

Let's Generalize

$$
v^{\prime}(x)=\Sigma_{y}^{\prime} v(y) f(p(x)-p(y))
$$

The weight is a 3D distance.
positions in some arbitrary space

Examples

$$
\mathrm{v}^{\prime}(x)=\sum_{y}^{\prime} \mathrm{v}(y) \mathrm{f}(\mathrm{p}(x)-\mathrm{p}(y))
$$

- Grayscale bilateral:
- $\mathrm{v}(\mathrm{x}, \mathrm{y})=\left\{\mathrm{I}_{\mathrm{x}, \mathrm{y}}\right\}$
- $p(x, y)=\left\{x, y, I_{x, y}\right\}$
- Color bilateral
- $v(x, y)=\left\{R_{x, y}, G_{x, y}, B_{x, y}\right\}$
- $p(x, y)=\left\{x, y, R_{x, y}, G_{x, y}, B_{x, y}\right\}$

Joint Bilateral Filtering

$$
\mathrm{v}^{\prime}(x)=\sum_{y}^{\prime} \mathrm{v}(y) \mathrm{f}(\mathrm{p}(x)-\mathrm{p}(y))
$$

- There is no reason for which \mathbf{v} and P should use the same RGB values.
- $\mathrm{v}(\mathrm{x}, \mathrm{y})=\left\{\mathrm{R}^{1}{ }_{x, y}, \mathrm{G}^{\prime}{ }_{x, y}, \mathrm{~B}^{\prime}{ }_{x, y}\right\}$
- $p(x, y)=\left\{x, y, R^{2} x_{x, y}, G_{x, y}^{2}, B^{2} x, y\right\}$
- Blur an image while respecting edges in another image!

More Applications

Sensor Fusion

Scene
Coarse
Image
P
Depthmap
V

More Applications

Sensor Fusion

More Applications

Selection Propagation

p : input image
v : map of (sparse) user strokes

More Applications

Flash-No-Flash Denoising

More Applications

Mesh Smoothing

Input
Mesh
Input
Mesh
V

Output Mesh
v'
p is a local descriptor of each vertex

More Applications

Non-Local Means Denoising

Output v'

p is a local descriptor of the patch around each pixel

Acceleration \#3 and on

$$
\mathrm{v}^{\prime}(x)=\sum_{y}^{\prime} \mathrm{v}(y) \mathrm{f}(\mathrm{p}(x)-\mathrm{p}(y))
$$

- Let's think about this in a different way.
- We have a high dimensional signal \mathbf{v} that lives in the space of p.

This is a linear filter in this space!
$\mathrm{v}\left(\mathrm{p}^{-1}(X)\right)=\sum^{\prime} \gamma \mathrm{v}\left(\mathrm{p}^{-1}(Y)\right) f(X-Y)$
Take $v \cdot p^{-1}$ and do a gaussian blur!

High-Dimensional

 Gauss Transform$$
\mathrm{v}^{\prime}(x)=\sum_{y}^{\prime} \mathrm{v}(y) f(\mathrm{p}(x)-\mathrm{p}(y))
$$

$$
\downarrow
$$

$$
\hat{v}_{i}=\sum_{j} e^{-\left|p_{i}-p_{j}\right|^{2} / 2} v_{j}
$$

High-Dimensional Gauss Transform

- Take a high-dimensional signal.
- Put it into a data structure.
- Perform a Gaussian blur really fast.
- Read out its values.

High-Dimensional

Gauss Transform

Input v

Representation in p-space

Gaussian blur
Readout What data structure to use?

Output v’

Explicitly represent positionspace

- Consider a bilateral filter of this 1D grayscale signal

$$
p_{i}=\left[x_{i} L_{i}\right] \quad v_{i}=\left[L_{i} 1\right]
$$

Slides stolen from Andrew Adams

Splat -> Blur -> Slice

- Embed the signal in position-space

Splat -> Blur -> Slice

- Perform a Gaussian blur in that space

Splat -> Blur -> Slice

- Sample the space at positions p_{i}

The Result

- We've smoothed the data without losing the edge

Input
Output

How do we represent the space?

With a grid (Acceleration \#3)

[Paris and Durand, 2006]

With a grid: Splat

With a grid: Blur

With a grid: Blur

With a grid: Slice

With a kd-tree (Acceleration \#4)

[Adams, Gelfand, Dolson, Levoy, SIGGRAPH 2009]

With a lattice (Acceleration \#5)

[Adams, Baek, Davis, EUROGRAPHICS 2010]

With a lattice: Splat

With a lattice: Blur

With a lattice: Blur

With a lattice: Blur

With a lattice: Slice

With a lattice

Recap

- Take a bilateral filter problem.
- Rewrite as a high-dimensional signal.
- Put it into a data structure.
- Perform a Gaussian blur really fast.
- Read out its values.

Comparisons

Method	Runtime	$\mathrm{d}>1$?	Can handle sparse data?	Joint Bilateral Filter?
Porikli '08	$\mathrm{O}(\mathrm{N} \log \mathrm{N})$	No	No	No
Dorsey '02	$\mathrm{O}(\mathrm{N} \log \mathrm{N})$	No	No	No
Grid	$\mathrm{O}\left(2^{\mathrm{d}} \mathrm{N}\right)$	Yes	Poorly	Yes
KD-tree	$\mathrm{O}(\mathrm{d} \mathrm{N} \log \mathrm{N})$	Yes	Yes	Yes
Lattice	$\mathrm{O}\left(\mathrm{d}^{2} \mathrm{~N}\right)$	Yes	Yes	Yes

Other Filters

- TONS of other edge-aware filters
- A paper or two at every SIGGRAPH

Trilateral Filter

- Bilateral filter penalizes deviation from pixel value - e.g. $p(y) f(p(y)-p(x))$
- Penalize deviation from the tangent at $p(x)$
- e.g. $(p(y)-\partial p(x)(y-x)) f(p(y)-p(x)-\partial p(x)(y-x))$
- Intuition:
- Bilateral = piecewise flat
- Trilateral = piecewise linear
- Theoretically better, but slower.

Weighted LeastSquares Filter

- Express smoothing as an optimization
- Given image $v(x)$, find $v^{\prime}(x)$ that minimizes:

$$
\text { - } \frac{\lambda_{1} \Sigma_{x}\left[v^{\prime}(x)-v(x)\right]^{2}}{\text { data term }}+\frac{\lambda_{2} \sum_{x} w_{x}\left[\partial v^{\prime} / \partial x(x)\right]^{2}}{\text { smoothness term }}
$$

- v' should be similar to input, but should not have high gradients where v does not.

Weighted LeastSquares Filter

- By choosing w_{x} wisely, one can selectively suppress edges at different scale. (Similar to $\sigma_{\mathrm{f}}, \sigma_{\mathrm{g}}$ in bilateral)

Aside: Image Pyramid

Aside: Image Pyramid

level I

level 2 level 3
(residual)

Each level contains certain frequency details.

Aside: Image Pyramid

level I

level 2 level 3
(residual)

Question: How to downsample / upsample?

Wavelet Transform

Average pairs. Duplicate to upsample

Laplacian Pyramid

level I

level 2
level 3
(residual)
level 0
To downsample, Gaussian blur and subsample. To upsample, insert zeros and blur.

Image Pyramid for Detail Magnification

Image Pyramid for Detail Magnification

- Unsuitable for filtering?
- Details of different "scale" or "frequency" are not nicely separated into different levels.
- Almost, but not quite.

Edge-Avoiding Wavelets

- Modify wavelet transform.
- Instead of using the simple coefficients, make the coefficients depend on edge strength.

Edge-Avoiding Wavelets

Local Laplacian Filter

- Use regular laplacian pyramid.
- Generate a new laplacian pyramid by filtering the coefficients in a clever way.

Local Laplacian Filter

Summary

- Edge-aware image processing is a popular topic.
- Bilateral filter
- Many acceleration schemes
- Many generalizations
- Many applications
- Other filters.

