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Announcements

• Assignment 1 grading

• Are you signed up?

• Assignment 2

• Due 2/8

• Term project proposal

• Due 2/13

• Must have had project conference. Sign up.
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Overview

• Bilateral filtering

• Theory and Applications

• Generalizations

• Other edge-aware filters
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Bilateral Filtering

• A very popular “edge-aware” filter

• Blurs a signal without destroying structure
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Blurring 101

• For each pixel v, mix it with its neighbors.

• Typically a convolution with a kernel f:

v’(x1, x2) = ∑y1,y2 v(y1, y2) f(y1-x1, y2-x2).

• Kernel is typically normalized (sum to one)

SUM

NEIGHBOR

WEIGHT
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Box Filter
v’(x1, x2) = ∑y1,y2 v(y1, y2) f(y1-x1, y2-x2).

• Box filter of size w x h

f(a, b) = 1/(wh),   if |a|≤w/2 and |b|≤h/2,
                0,           otherwise.
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Box Filter
v’(x1, x2) = ∑y1,y2 v(y1, y2) f(y1-x1, y2-x2).

• Box filter of size w x h
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Gaussian Filter
v’(x1, x2) = ∑y1,y2 v(y1, y2) f(y1-x1, y2-x2).

• Gaussian of stdev 5

f(a, b) = exp( - [a2+b2] / 10) / (50π)0.5
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Gaussian Filter
v’(x1, x2) = ∑y1,y2 v(y1, y2) f(y1-x1, y2-x2).

• Gaussian of stdev 5
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Box vs. Gaussian

Box Gaussian
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Box vs. Gaussian

BoxGaussian
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Gaussian on Edges

•Averaging with neighbors.

• Weights decay as spatial distance grows.

• v’(x) = ∑y v(y) f(y-x).

vv’ f

⊗
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Gaussian on Edges

• Why do we average with neighbors?

• Trying to get a better estimate of local 
radiance

• If so, why not average with neighbors 
that are more likely to have similar 
radiance?
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Bilateral filtering

•Averaging with neighbors.

• Weights decay as spatial distance grows.

v’(x) = ∑y v(y) f(y-x)

• Weights decay as color distance grows.

weight on spatial distance

g(v(y)-v(x))

weight on color distance

∑y f(y-x) g(v(y)-v(x)) = K(x)
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Bilateral on Edges

v

(at a particular x)

f

⊗

(at a particular x)v’

•Averaging with neighbors.

• v’(x) = ∑’y v(y) f(y-x) g(v(y)-v(x))
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Bilateral on Edges
•Averaging with neighbors.

• v’(x) = ∑’y v(y) f(y-x) g(v(y)-v(x))

vv’ f

⊗

(at a particular x)

(at a particular x)
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Bilateral Examples
• v’(x) = ∑’y v(y) f(y-x) g(v(y)-v(x))

• The stdevs of f and g control filter strength.

input σf=5, σg=0.1 σf=5, σg=0.2 
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Applications
Light Denoising

input σf=5, σg=0.2 
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Applications
Non-Photorealistic Rendering

input σf=5, σg=0.1 
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Applications
Detail Enhancement

input σf=5, σg=0.1 

=

input minus detail

+

detail

+

detail x 3
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Applications
Detail Enhancement

input σf=5, σg=0.1 

=

input minus detail

+

detail x 3

+

detail x 3
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Applications
HDR Tone Mapping

gamma 0.6
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Applications
HDR Tone Mapping

input log luminance

shown at 1/16

coarse detail

+

shown at 1/16

div by 3

exp

output
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Caveats

NORMALIZED SUM

NEIGHBOR

WEIGHT1

WEIGHT2

Naive implementation: O(N2)

Truncate f: O(N σf2)

Compare to regular gaussian: O(N σf) or O(N log N)
separable using FFT

• Current formulation: 

v’(x) = ∑’y v(y) f(y-x) g(v(y)-v(x))
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Normalization

NORMALIZED SUM

NEIGHBOR

WEIGHT1

WEIGHT2

Filter an image whose pixels are all 1

using the same weights.

The resulting image = K(x)

• Current formulation: 

v’(x) = ∑’y v(y) f(y-x) g(v(y)-v(x))
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Equivalently, add a homogeneous channel to p. 
De-homogenize later.

e.g. if p=(r,g,b), filter (r,g,b,1) instead.

If the result is (r’,g’,b’,k), compute (r’/k,g’/k,b’/k).

Normalization

NORMALIZED SUM

NEIGHBOR

WEIGHT1

WEIGHT2

• Current formulation: 

v’(x) = ∑’y v(y) f(y-x) g(v(y)-v(x))
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• Partition pixels by value: G0, G1, ..., G255.

v’(x) = ∑’y v(y) f(x-y) g(v(x)-v(y))

Acceleration #1
(Porikli, CVPR 2008)

G0 G1 G2 G3 G4v

=
0   1   2
1   2   3
2   3   4
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• Partition pixels by value: G0, G1, ..., G255.

• Then,
v’(x) = ∑i∑y∈Gi v(y) f(x-y) g(v(x)-v(y))

• p’(x) = ∑i∑y∈Gi i f(x-y) g(v(x)-i)

• p’(x) = ∑i [ ∑y∈Gi f(x-y) ] i g(v(x)-i)

v’(x) = ∑’y v(y) f(x-y) g(v(x)-v(y))

Acceleration #1
(Porikli, CVPR 2008)

contribution from pixels in Gi

gaussian blur of mask

independent
of y
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Acceleration #1
(Porikli, CVPR 2008)

• v’(x) = ∑i [ ∑y∈Gi f(x-y) ] i g(v(x)-i)

• For each pixel, do a weighted sum of 
the blurred masks.

• Runtime: O(256 N log N)

gaussian blur of mask weight

Not impressive?
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Acceleration #1
(Porikli, CVPR 2008)

• v’(x) = ∑i [ ∑y∈Gi f(x-y) ] i g(v(x)-i)

• For each pixel, do a weighted sum of 
the blurred masks.

• Runtime: O(256 N)

box filter of mask weight
Box filter is O(1) amortized
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Acceleration #1
(Porikli, CVPR 2008)

• v’(x) = ∑i [ ∑y∈Gi f(x-y) ] i g(v(x)-i)

• For each pixel, do a weighted sum of 
the blurred masks.

• Runtime: O(32 N)

box filter of mask weight
Box filter is O(1) amortized

Using fewer groups Gi
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• Define vi(y) = v(y) g(i - v(y))

• Apply gaussian blur to vi to get wi.

• Then,
v’(x) = ∑’y f(x-y) v(y) g(v(x)-v(y)) 

• p’(x) = ∑’y f(x-y) vv(x)(y)

• p’(x) = wv(x)(x)

v’(x) = ∑’y v(y) f(x-y) g(v(x)-v(y))

Acceleration #2
(Durand and Dorsey, SIGGRAPH 2002)
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• Need to compute each wi.

• 256 gaussian blurs...,
one for each i∈[0,255]

• In practice, can sample i to be of fewer 
values. 

• O(32 N log N) 

v’(x) = wv(x)(x) where
wi=f⊗vi

Acceleration #2
(Durand and Dorsey, SIGGRAPH 2002)
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Acceleration #1,2

• Downsides?

• We’re grouping pixels by intensity. 
This works for grayscale image (d=1)

• Runtime exponential in d.

• The set of possible intensity 
vectors grow fast!
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v’(x) = ∑’y v(y) f(x-y) g(v(x)-v(y))

The weight is a 3D distance.

Let’s Generalize
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v’(x) = ∑’y v(y) f({x, v(x)}-{y, v(y)})

The weight is a 3D distance.

Let’s Generalize

positions in the 
3D space 
visualized 

below

p(x) p(y)

positions in 
some arbitrary 

space

?
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v’(x) = ∑’y v(y) f({x, v(x)}-{y, v(y)})

The weight is a 3D distance.• Grayscale bilateral: 

• v(x,y)={Ix,y}

• p(x,y)={x, y, Ix,y}

• Color bilateral

• v(x,y)={Rx,y,Gx,y,Bx,y}

• p(x,y)={x, y, Rx,y,Gx,y,Bx,y}

Examples

positions in the 
3D space 
visualized 

below

p(x) p(y)

positions in 
some arbitrary 

space
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v’(x) = ∑’y v(y) f({x, v(x)}-{y, v(y)})

The weight is a 3D distance.• There is no reason for which v
and p should use the same
RGB values.

• v(x,y)={R1x,y,G1x,y,B1x,y}

• p(x,y)={x, y, R2x,y,G2x,y,B2x,y}

• Blur an image while respecting edges in 
another image!

Generalize Further

positions in the 
3D space 
visualized 

below

p(x) p(y)

positions in 
some arbitrary 

space

Joint Bilateral Filtering

Wednesday, February 1, 12



More Applications
Sensor Fusion

Scene
Image

p

Coarse
Depthmap

v

Filtered
Depthmap

v’

This is a chair.
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More Applications
Sensor Fusion

Scene
Image

p
Sparse

Depthmap
v

Filtered
Depthmap

v’
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More Applications
Selection Propagation

http://www.youtube.com/watch?v=e7kLRllwHPc&t=3m36s

p : input image
v : map of (sparse) user strokes
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More Applications
Flash-No-Flash Denoising

Flash
Image

p

No-Flash
Image

v

Denoised
v’
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More Applications
Mesh Smoothing

Input
Mesh

v

Output
Mesh

v’

p is a local 
descriptor of 
each vertex
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More Applications
Non-Local Means Denoising

Input
v

Output
v’

p is a local 
descriptor of 

the patch 
around each 

pixel
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Acceleration #3 and on

• Let’s think about this in a different way.

• We have a high dimensional signal v 
that lives in the space of p.

• This is a linear filter in this space!
v(p-1(X)) = ∑’Y v(p-1(Y)) f(X - Y)

• Take v⋅p-1 and do a gaussian blur!

v’(x) = ∑’y v(y) f(p(x) - p(y))
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High-Dimensional 
Gauss Transform

v’(x) = ∑’y v(y) f(p(x) - p(y))
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High-Dimensional 
Gauss Transform

• Take a high-dimensional signal.

• Put it into a data structure.

• Perform a Gaussian blur really fast.

• Read out its values.
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High-Dimensional 
Gauss Transform

Input v

Representation
in p-space

Discretized
data structure

Gaussian blur Readout

Output v’What data structure to use?
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• Consider a bilateral filter of this 1D grayscale 
signal

Explicitly represent position-
space

49

p

i

= [x
i

L

i

] v

i

= [L
i

1]

Slides stolen from Andrew Adams
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Splat -> Blur -> Slice
• Embed the signal in position-space

50

Li
x

i
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Splat -> Blur -> Slice
• Perform a Gaussian blur in that space

51

Li
x

i
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Splat -> Blur -> Slice
• Sample the space at positions    

52

x

i

Li

pi
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The Result
• We’ve smoothed the data without losing the edge

53

Input Output
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How do we represent the space?

54
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With a grid (Acceleration #3)
[Paris and Durand, 2006]

55
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With a grid: Splat

56
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With a grid: Blur

57
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With a grid: Blur

58
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With a grid: Slice

59
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With a kd-tree (Acceleration #4)
[Adams, Gelfand, Dolson, Levoy, SIGGRAPH 2009]

60
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With a lattice (Acceleration #5)
[Adams, Baek, Davis, EUROGRAPHICS 2010]

61
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With a lattice: Splat

62
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With a lattice: Blur

63
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With a lattice: Blur

64

Wednesday, February 1, 12



With a lattice: Blur

65
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With a lattice: Slice

66
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With a lattice

67
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Recap

• Take a bilateral filter problem.

• Rewrite as a high-dimensional signal.

• Put it into a data structure.

• Perform a Gaussian blur really fast.

• Read out its values.
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Comparisons

Method Runtime d>1? Can handle 
sparse data?

Joint 
Bilateral 
Filter?

Porikli ’08 O(N log N) No No No

Dorsey ’02 O(N log N) No No No

Grid O(2d N) Yes Poorly Yes

KD-tree O(d N log N) Yes Yes Yes

Lattice O(d2 N) Yes Yes Yes
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Other Filters

• TONS of other edge-aware filters

• A paper or two at every SIGGRAPH
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Trilateral Filter
• Bilateral filter penalizes deviation from pixel value

• e.g. p(y) f(p(y) - p(x))

• Penalize deviation from the tangent at p(x)

• e.g. (p(y) - ∂p(x)(y-x)) f(p(y) - p(x) - ∂p(x)(y-x))

• Intuition:

• Bilateral = piecewise flat

• Trilateral = piecewise linear

• Theoretically better,
but slower.

Noisy input

Bilateral output
Trilateral output
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Weighted Least-
Squares Filter

• Express smoothing as an optimization

• Given image v(x), find v’(x) that minimizes:

• λ1∑x[v’(x) - v(x)]2 + λ2∑x wx[∂v’/∂x(x)]2

• v’ should be similar to input, but should not have 
high gradients where v does not.

data term smoothness term
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Weighted Least-
Squares Filter

• By choosing wx wisely, one can selectively suppress 
edges at different scale. (Similar to σf, σg in bilateral)
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Aside: Image Pyramid

level 0

level 1
level 2 level 3

(residual)
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level 1
level 2

Aside: Image Pyramid

level 0

level 3
(residual)

Each level contains certain 
frequency details.
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level 1
level 2

Aside: Image Pyramid

level 0

level 3
(residual)

Question: How to downsample / upsample?
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Wavelet Transform

Average pairs. Duplicate to upsample

1 0 2 4 1 3 1 0

0.5 3 2 0.5

1.75 1.25

1.5
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level 1
level 2

Laplacian Pyramid

level 0

level 3
(residual)

To downsample, Gaussian blur and subsample.
To upsample, insert zeros and blur.
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Image Pyramid for 
Detail Magnification

Halo 
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Image Pyramid for 
Detail Magnification

• Unsuitable for filtering?

• Details of different “scale” or “frequency” 
are not nicely separated into different 
levels.

• Almost, but not quite.
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Edge-Avoiding Wavelets

• Modify wavelet transform.

• Instead of using the simple coefficients, make the 
coefficients depend on edge strength.

Wednesday, February 1, 12



Edge-Avoiding Wavelets
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Local Laplacian Filter

• Use regular laplacian pyramid.

• Generate a new laplacian pyramid by filtering the 
coefficients in a clever way.
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Local Laplacian Filter
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Summary

• Edge-aware image processing is a popular topic.

• Bilateral filter

• Many acceleration schemes

• Many generalizations

• Many applications

• Other filters.
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