Computational Solution Photography Sensors

Jongmin Baek

CS 478 Lecture Jan 18, 2012

Announcements

- Final Project: Description on the web.
- Piazza: Sign up at piazza.com
 - Ask questions here.
- Office hours: Tuesday slot removed.
 - Now W3:45-5, Th2:30-3:45

Tegra 3 Tablets

• Pick up: Friday afternoon at Rm. 360.

Looking Ahead

- Next week
 - Monday
 - Lecture on FCam (Reading assigned!)
 - "Hello Camera" Assignment out
 - Wednesday
 - Lecture on camera control algo.

Outline

• Background material, Part II

- Perception
- Sensor
- Noise

Lot of slides stolen from Marc Levoy

Outline

• Background material, Part II

• Perception

• Sensor

• Noise

Wednesday, January 18, 12

Visible Light

wavelengths between 400nm and 700nm

Illumination

wavelengths between 400nm and 700nm

Light Transport

• One cause for "metamers"

Trichromatic Vision

spectral locus

- Set of perceivable colors (distinct stimuli)
 - Convex hull of the responses for pure wavelengths.

Color Gamut: Consequences

• Goal of photography: reproduce the sensation of seeing a scene.

Two Questions

- Given a point in the scene, how do we calculate the appropriate (ρ, γ, β) ?
- Given (ρ, γ, β), how do we recreate the sensation in the viewer?

- Given (ρ, γ, β), how do we recreate the sensation in the viewer?
 - Want to display a spectrum that would generate the desired (ρ, γ, β) in the viewer's eyes.
 - Pure wavelength is hard to isolate.
 - Instead, use primary colors.

- Choose three primaries R, G, B.
 - Does not have to be pure wavelengths.
- Normalize to obtain a desired reference white
 - This yields an RGB cube

- What exactly is R, G, B each?
 - Is there a specfic wavelength for each? No.
 - Is there a specific spectrum for each? Yes, but you can pick your own.

Choice of Primaries

- sRGB (HP, Microsoft, 1996)
- Adobe RGB (Adobe, 1998)
- Adobe Wide-Gamut RGB

. . .

Chromaticity Diagram

- The color gamut diagram can be compressed into 2D by homogenizing the coordinates.
- Plot the primaries.
 - The convex hull is the extent of reproducible sensations.

spectral locus

Color Models

- RGB (R, G, B)
- YUV (Y, U/U, V/V) or YCbCr
 - Y: Luminance; U,V: Chrominance
 - Used in video processing(incl.Tegra 3), JPEG
- HSV
 - H: Hue; S: Saturation; V: Value
- CMYK

Perceptual Color Model

- X,Y,Z primaries correspond to a spectral sensitivity of the three cones.
- Unfortunately, the values are not perceptually spaced.
 - e.g. the difference between X=1 and X=2, and the difference between X=2 and X=3 are not equivalent.

Perceptual Color Model

• (CIE-)LAB:

• Meant to be a perceptually correct metric.

• $L^* = ||6(Y/Y_w)|^{1/3} - |6, \text{ for } Y/Y_w > 0.008856,$ 903.3 $(Y/Y_w)^{1/3}$, otherwise.

• $a^* = 500((X/X_w)^{1/3}-(Y/Y_w)^{1/3})$

• $b^* = 200((Y/Y_w)^{1/3}-(Z/Z_w)^{1/3})$

Perceptual Color Model

- (CIE-)LAB:
 - How do you convert from L*a*b* to RGB?
 - There's no fixed formula. It depends on the RGB primaries.
 - e.g. LAB-sRGB

Outline

• Background material, Part II

• Perception

• Sensor

• Noise

Wednesday, January 18, 12

Camera Pipeline

 \rightarrow

analog to digital conversion (ADC)

processing: demosaicing, tone mapping & white balancing, denoising & sharpening, compression

Example Pipeline

processing: demosaicing, tone mapping & white balancing, denoising & sharpening, compression

Compact Flash card

storage

Canon DIGIC 4 processor

The Science

- Photoelectric Effect
 - Materials may generate electrons upon being hit by a photon.
- Quantum Efficiency
 - Not all photons will produce an electron.

back-illuminated

The Pixel

• Size matters

- Casio EX-FI: 2.5µ x 2.5µ
- Nokia N900: 3.1μ x 3.1μ
- Canon 5D II: 6.4µ x 6.4µ
- Capacity matters

Blooming

(ccd-sensor.de)

CMOS vs. CCD

- Complimentary Metal-Oxide Semiconductor
 - per-pixel amplifier converts charges to voltage.
 - cheap, low-power but noisy

- Charge-Coupled Device
 - charge shifts along column to an amplifier
 - good but not as cheap.

Anatomy of a Pixel

Anatomy of a Pixel

- Microlens
 - Improves fill factor

• Substrate

- Science happens
- Circuitry
 - For reading / resetting

Antialiasing filters

birefringence in a calcite crystal

antialiasing filter

- Typically two layers of birefringent material
 - splits I ray into 4 rays

Antialiasing filters

anti-aliasing filter removed

normal
Antialiasing filters

anti-aliasing filter removed

normal

Wednesday, January 18, 12

Color Filter Arrays

- Recall: we need information on (ρ, γ, β) .
- Need discrimination among multiple wavelengths
 - Three types (of spectral sensitivity) of pixels would be sufficient.
- Color filter array: turns pixels into one of three types.

Bayer Pattern

- Checkered pattern of green and alternating red/blue
- Pretty much everywhere

Bayer Pattern

- Checkered pattern of green and alternating red/blue
- Pretty much everywhere

Cone cells

Color filters in Canon 30D

RGBY

Wednesday, January 18, 12

"RGBE" (Sony)

Subtractive Colors

"SuperCCD" (Fuji)

Previous Pixel Array

EXR Pixel Array

Foveon Sensor

The Bayer filter Image Sensor

R: 25%, G: 50%, B: 25%

The old-fashioned Bayer filter image sensor can only capture 50% of the green color data, and a mere 25% each of the blue and the red.

The Foveon X3® Direct Image Sensor

R: 100%, G: 100%, B: 100%

The Foveon X3[®] has three layers of photosensors, enabling it to capture 100% of the RGB color data at once.

Reading Pixels (CCD)

Reading Pixels (CMOS)

One storage capacitor per column

Read the storage capacitors.

Analog-to-Digital Conversion

• Convert analog voltage to discrete values.

Dynamic Range

• Typical ADC work with 8-16 bits.

• At n bits, dynamic range of 2ⁿ:

• Even the best ADC is only as good as the pixel well capacity.

Dynamic Range

- Human eye
 - Capable of I00:I
 - With adaptation, **1,000,000:**
- World
 - Typically 100,000:1
 Up to 100,000,000,000:1

Analog Gain ("ISO")

- Amplifies the analog voltage before ADC
 - Avoids amplifying quantization error + other noise post-ADC.

Other Types of Sensors

- Amplifies the analog voltage before ADC
 - Avoids amplifying quantization error + other noise post-ADC.

Outline

Background material, Part II
Perception
Sensor

• Noise

Photon Shot Noise

- Pixels measure the # of incident photons.
 - Upon a fixed area, during a fixed time.

- Varies from time to time.
- Varies from pixel to pixel.
 - Follows the Poisson distribution.

Photon Shot Noise

- Poisson distribution
 - $p(k; \lambda) = \lambda^k e^{-\lambda} / k!$
 - Mean = Variance = λ
- Typically approximated as a Gaussian

probability density function

- Assuming zero bias, we care about the ratio between
 - mean (signal)
 - standard dev. (noise)

- e.g. in Poisson noise
 - Mean = λ
 - Standard deviation = $\lambda^{1/2}$
 - As the expected pixel value (mean) grows, the standard deviation grows slowly.
 - As signal grows, SNR rises.

Test Chart

Captured by Canon 10D (ISO 1600)

Wednesday, January 18, 12

• SNR = 20 $\log_{10} (\mu/\sigma)$

• Unit is dB

• If the ratio is 10-to-1, we achieve 20 dB.

Dark Current

- Electrons dislodged by random thermal activity.
 - Increases linearly with exposure time.
 - Increases exponentially with temperature..

Hot Pixels

- Electrons leaking into wells because of manufacturing defects
 - Increases linearly with exposure time.

Canon 20D, 15s/30s exposure

Fixed Pattern Noise

- Manufacturing variations across pixels, columns, etc
 - Constant over time

Canon 20D, ISO 800, cropped

Read Noise

- Thermal noise in readout circuitry
 - Mainly in CMOS

Canon ID Mk III, cropped

Pixel Response Non-Uniformity

- $\sim 1\%$ variance in the sensivity of pixels
 - Think about it as a per-pixel vignetting issue.

Quantization Error

- Any ADC process has quantization errors.
 - Depends on the bitdepth of the ADC.

Electronic Interference

- Interference from other circuitry
 - Exacerbated by poor insulation

Noise: Summary

- Photon shot noise
- Hot pixels
- Dark current
- Fixed pattern noise
- Read noise

Much of the literature treats these altogether as a Gaussian noise

Pixel non-uniformity

Slide stolen and adapted from Sung Hee Park

incurred before / after

			analog gain		
		Signal	Shot noise variance	Read noise variance	Read noise variance
	(A) exp I, gain I	J	J	σ_0^2	σ_1^2
blurry, clean	(B) exp n, gain I	nJ	nJ		
sharp, noisy	(C) exp I, gain n	nJ	n²J		
	(D) Accum. n (A)'s	nJ	nJ		
multi-image denoising	(E) Average n (C)'s	nJ	nJ		

Slide stolen and adapted from Sung Hee Park

incurred	before /	after
ana	log gain	

		Signal	Shot noise variance	Read noise variance	Read noise variance
	(A) exp I, gain I	J	J	σ_0^2	σι ²
blurry, clean	(B) exp n, gain I	nJ	nJ	σ_0^2	
sharp, noisy	(C) exp I, gain n	nJ	n²J	$n^2 \sigma_0^2$	
	(D) Accum. n (A)'s	nJ	nJ	$n\sigma_0^2$	
multi-image denoising	(E) Average n (C)'s	nJ	nJ	$n\sigma_0^2$	

Slide stolen and adapted from Sung Hee Park
Noise Game

incurred before / after analog gain

		Signal	Shot noise variance	Read noise variance	Read noise variance
	(A) exp 1, gain 1	J	J	σ_0^2	σı²
blurry, clean	(B) exp n, gain I	nJ	nJ	σ_0^2	σ_1^2
sharp, noisy	(C) exp I, gain n	nJ	n²J	$n^2 \sigma_0^2$	σ_1^2
	(D) Accum. n (A)'s	nJ	nJ	$n\sigma_0^2$	nσı²
multi-image denoising	(E) Average n (C)'s	nJ	nJ	$n\sigma_0^2$	$I/n \sigma_1^2$

Slide stolen and adapted from Sung Hee Park

Questions?

• TO-DOs

- Keep thinking about the final project.
- Pick up tablets on Friday.
- Do the assigned readings for Monday.