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Announcements

® Final Project: Description on the web.
® Piazza: Sign up at piazza.com

® Ask questions here.

® : Tuesday slot removed.

® Now W3:45-5 Th2:30-3:45




Tegra 3 Tablets

® Pick up: Friday afternoon at Rm. 360.




Looking Ahead

® Next week
® Monday
® | ecture on FCam (Reading assigned!)
® “Hello Camera” Assignment out

® VWednesday

® | ecture on camera control algo.
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Visible Light

< Increasing Frequency (V)

(wikipedia)
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® wavelengths between 400nm and 700nm
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lHlumination

(LampTech)

Tungsten Incandescent Daylight (D65) Mercury Fluorescent (MBF)
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® wavelengths between 400nm and 700nm
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Light Transport

Relative energy
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® One cause for “‘metamers’
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Trichromatic Vision
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Color BGamut

spectral locus

® Set of perceivable colors (distinct stimuli)

® Convex hull of the responses for pure
wavelengths.




Color Gamut:
Consequences
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® Goal of photography:




Two Questions

® Given a point in the scene, how do we
calculate the appropriate (p, Y, B)?

® Given (p,Y, B), how do we recreate the
sensation in the viewer!




Color Primaries

® Given (p,Y, B), how do we recreate the
sensation in the viewer!

® Want to display a spectrum that would

generate the desired (p, Y, B) in the
viewer’s eyes.

® Pure wavelength is hard to isolate.

® |nstead, use primary colors.




Color Primaries
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Color Primaries

Stimulus

World

——

(n-dim)

(3-dim)
(P, Y, B)

Primary = (D1, Y1, B1)

Stimulus
Primary fag (2. v ) (g "3 dim)

P, Y, B)

= (03, Y3, B3)




Color Primaries

® Choose three primaries R, G, B.

® Does not have to be pure wavelengths.

® Normalize to obtain a desired reference white

® This yields an RGB cube

i S Ul e

Magenta = (1,0,1) e White = (1,1,1)

Black = (0.0,0) ... Green - (0,1,0)

Red = (1,0,0) _ Yellow = (1,1.0)
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Color Primaries

® What exactly is R, G, B each?

® |s there a specfic wavelength for each? No.

® |s there a specific spectrum for each? Yes, but
you can pick your own.

i S Ul e

Magenta = (1,0,1) e White = (1,1,1)

Black = (0.0,0) ... Green - (0,1,0)

Red = (1,0,0) _ Yellow = (1,1.0)
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Choice of Primaries
® sRGB (HP Microsoft, | 996)
® Adobe RGB (Adobe, 1998)
® Adobe Wide-Gamut RGB

i S Ul e

Magenta = (1,0,1) e White = (1,1,1)

Black = (0.0,0) ... Green - (0,1,0)

Red = (1,0,0) _ Yellow = (1,1.0)




Chromaticity Diagram

® The color gamut diagram can be

compressed into 2D by homogenizing the
coordinates.

® Plot the primaries.

® The convex hull is the

extent of reproducible
sensations.

spectral locus




Figure 3a: CIE 1931 chromaticity diagram : Examples of RGB spaces. The labels
indicate the wavelengths, in nm, and locations of specific monochromatic colors.
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Color Models

e RGB (1, G, 1)
e YUV (Y, U/U,VIV) or YCbCr

® Y:Luminance; U,V: Chrominance

® Used in video processing(incl. Tegra 3), JPEG
o HSV

® H:Hue;S: Saturation;V:Value
e CMYK




Perceptual Color
Model

® X,Y,Z primaries correspond to a spectral
sensitivity of the three cones.

o XY/Z:

® Unfortunately, the values are not perceptually
spaced.

® c.g.the difference between X=1 and X=2,
and the difference between X=2 and X=3
are not equivalent.




Perceptual Color
Model

e (CIE-)LAB:
® Meant to be a perceptually correct metric.

o L* = | 16(Y/Yw)' 316, for Y/Y,>0.008856,
903.3 (Y/Yw)'3, otherwise.

o 2% = 500((X/Xw)B-(Y/Yy)'3)
o b* = 200((Y/Yw)'3-(Z/Z4)'"?)




Perceptual Color
Model

o (CIE-)LAB:
® How do you convert from L*a*b* to RGB!?

® There’s no fixed formula. It depends on the
RGB primaries.

® c.g. LAB-sRGB




Qutline

® Background material, Part Il
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Camera Pipeline

processing:

demosaicing,

analog to digital tone mapping &
(ADC) denoising &

sharpening,
compression




Example Pipeline

processing:
— demosaicing,
analog to digital tone mapping &

conversion B4 white balancing, storage

denoising &
sharpening,
compression

Canon 21 Mpix CMOS sensor

L el
e

Canon DIGIC 4 processor Compact Flash card
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The Science

® Photoelectric Effect

® Materials may generate electrons upon
being hit by a photon.

® Quantum Efficiency

® Not all photons will prod
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The Pixel

® Size matters

® Casio EX-FI:2.5u x 2.5
® Nokia N900:3.1p x 3.1
® Canon 5D llI: 6.4 x 6.4

® Capacity matters




Blooming

(ccd-sensor.de)

Wednesday, January 18, 12



CMOS vs. CCD

Anatomy of the Active Pixel Sensor Photodiode Silicon Photodiode Anatomy

Drain i Incoming
Veltalége Pmilt Photons cco

Control Trgr;st;éer Gates_

Microlens —— | Gate .
Red » /

==Color
Filter Buried
Reset Channel
Amplifier ; Transistor
Transistor S

Select

Column Bus

Bus
Transistor ‘
Photodiode

Silicon

Substrate —— i

\ Lateral

Potential Overflow ppgatodiode l

Drain
Well '”‘5;;2?‘9“ Potential

Figure 3 Figure 5 F’otentia?alell Barrier p-Silicon

® Complimentary Metal-Oxide ® Charge-Coupled Device
Semiconductor

® per-pixel amplifier converts ® charge shifts along
charges to voltage. column to an amplifier

® cheap, low-power but noisy ® good but not as cheap.
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Anatomy of a Pixel

(Sony)

Incidental light Incidental light

On-chip lens T
‘ . Back side

Color filf L L

n EI Rt
Metalwiring JH  HO0O OEE 1| Substrate
5] 5

Light receiving
] ]
surface e S

Metal wiring
Substrate

Front-illuminated structure Back-illuminated structure
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Anatomy of a Pixel

® Microlens

® |mproves fill factor
® Substrate

® Science happens
® Circuitry

® For reading / resetting
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Antialiasing filters

birefringence in a calcite crystal

antialiasing filter

® Typically two layers of birefringent material

® splits | ray into 4 rays




Antialiasing filters

anti-aliasing filter removed normal
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Antialiasing filters
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Color Filter Arrays

® Recall: we need information on (p, Y, B).

® Need discrimination among multiple
wavelengths

® Three types (of spectral sensitivity) of
pixels would be sufficient.

o : turns pixels into one of
three types.




Bayer Pattern

® Checkered pattern of green and alternating
red/blue

® Pretty much everywhere

A
9
:
%

<o
oo N
!‘332‘1%
> <
<«

id
III
Z99
¢
B

‘QQ

X
R,
\
\




Bayer Pattern

® Checkered pattern of green and alternating
red/blue

® Pretty much everywhere

400 450 500 550 600 650 700 750 800 400 450 S00 550 600 650 700 750 B80OO

Cone cells Color filters in Canon 30D
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Other Patterns
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Other Patterns

“RGBE” (Sony)
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Subtractive Colors




Other Patterns

“SuperCCD” (Fuiji)

Previous Pixel Array EXR Pixel Array
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Wednesday, January 18, 12

oveon Sensor

The Bayer filter Image Sensor

The old-fashioned Bayer filter image sensor

R: 25%, G: 50%, B: 25% can only capture 50% of the green color data,
and a mere 25% each of the blue and the red.

The Foveon X3® Direct Image Sensor

The Foveon X3® has three layers of
R: 100%, G: 100%, B: 100%  photosensors, enabling it to capture 100%
of the RGB color data at once.



Reading Pixels (CCD)

out at the end.




Reading Pixels (CMOS)

® One storage capacitor per column

umn

Horizontal CCD

® Read the storage capacitors.
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Analog-to-Digital
Conversion

® Convert analog voltage to discrete values.
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=
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DECODER
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Dynamic Range

® Typical ADC work with 8-16 bits.

® At n bits, dynamic range of 2"

® Even the best ADC is only as good as the
pixel well capacity.




Dynamic Range

® Human eye

® Capable of 100:1

® With adaptation, 1,000,000:1
® World

® Typically100,000:

® Up to 100,000,000,000:1




Analog Gain (“ISO”)

® Amplifies the analog voltage before ADC

® Avoids amplifying quantization error +
other noise post-ADC.




Other Types of Sensors

® Amplifies the analog voltage before ADC

® Avoids amplifying quantization error +
other noise post-ADC.




Qutline

® Background material, Part Il

® Perception
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Photon Shot Noise

® Pixels measure the # of incident photons.

® Upon a fixed area, during a fixed time.

® Varies from time to time.

® Varies from pixel to pixel.

® Follows the Poisson distribution.




Photon Shot Noise

® Poisson distribution
® p(k;\) = Aker / k!
® Mean =Variance = A

® Typically approximated as a Gaussian

probability
density

function



Signal v. Noise

® Assuming zero bias, we care about the ratio
between

® mean (signal)

® standard dev. (noise)




Signal v. Noise

® c.g.in Poisson noise
® Mean = A
® Standard deviation = A!/2

® As the expected pixel value (mean)
grows, the standard deviation grows

slowly.

® As signal grows, SNR rises.




Signal v. Noise

Test Chart

Captured by Canon 10D (ISO 1600)




Signal v. Noise

® SNR = 20 logio (M/O)
® Unitis dB

® |f the ratio is |0-to-1, we achieve 20 dB.




Dark Current

® Electrons dislodged by random thermal activity.

® |ncreases linearly with exposure time.

® |ncreases exponentially with temperature..




Hot Pixels

® Electrons leaking into wells because of
manufacturing defects

® |ncreases linearly with exposure time.

Canon 20D, |5s/30s exposure



Fixed Pattern Noise

® Manufacturing variations across pixels, columns, etc

® (Constant over time

Canon 20D, 15U 8UU, cropped
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Read Noise

® Thermal noise in readout circuitry

® Mainly in CMOS

Canon |ID Mk lll, cropped
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Pixel Response
Non-Uniformity

® ~|% variance in the sensivity of pixels

® Think about it as a per-pixel vignetting issue.




Quantization Error

® Any ADC process has quantization errors.

® Depends on the bitdepth of the ADC.




Electronic Interference

® |nterference from other circuitry

® Exacerbated by poor insulation




Noise: Summary

® Photon shot noise

® Hot pixels

Much of the literature

® Dark current
treats these altogether

® Fixed pattern noise . :
as a Gaussian noise

® Read noise

® Pixel non-uniformity
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Noise Game

incurred before / after

analog gain
Shot noise Read noise Read noise
variance variance variance
(A) exp |, gain | | J 00’ gk

blurry, clean  (B) exp n, gain |
sharp, noisy  (C) exp |, gain n
(D) Accum.n (A)’s

i |
nﬁin'o'gige (E) Average n (C)’s

Slide stolen and adapted from Sung Hee Park
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blurry, clean

sharp, noisy

multi-image
denoising
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Noise Game

incurred before / after

analog gain
Shot noise Read noise Read noise
variance variance variance
(A) exp |, gain | | J 00’ gk

(B) exp n, gain | .
(C) exp |, gain n .
(D) Accum.n (A)’s .
(E) Average n (C)’s .

Slide stolen and adapted from Sung Hee Park




blurry, clean

sharp, noisy

multi-image
denoising
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Noise Game

incurred before / after

analog gain
Shot noise Read noise Read noise
variance variance variance
(A) exp |, gain | | 00’ gk
(B) exp n, gain | n|
(C) exp |, gain n nj

(D) Accum.n (A)’s n|

(E) Average n (C)’s nj

Slide stolen and adapted from Sung Hee Park



blurry, clean

sharp, noisy

multi-image
denoising

Wednesday, January 18, 12

Noise Game

incurred before / after

analog gain

- Shot noise Read noiseg T’\eac! noise
variance  variance  variance

(A) exp |, gain | | J ok

(B) exp n, gain | n| n|

(C) exp I,gain n nJ n?

(D) Accum.n (A)’s n| n|

(E) Average n (C)’s nj n|

Slide stolen and adapted from Sung Hee Park



blurry, clean

sharp, noisy

multi-image
denoising
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Noise Game

incurred before / after

analog gain

- Shot noise Read noiseg i\ead noise
variance  variance  variance

(A) exp |, gain | | J 00’

(B) exp n, gain | nJ nJ 00’

(C) exp I, gain n nJ n? n%0g?

(D) Accum. n (A)’s nJ nJ nOo?

(E) Average n (C)’s nJ nJ N0’

Slide stolen and adapted from Sung Hee Park



Noise Game

incurred before / after

analog gain
Shot noise Read noise Read noise
variance  variance  variance
(A) exp |, gain | | J 00’ gk
blurry,clean  (B) exp n, gain | n| n| 0o’ 02
sharp, noisy  (C) exp |, gain n n| n? n*0o? 02
(D) Accum. n (A)’s nJ nJ nOo>  nO)?
multi-image (E) Average n (C)’s nJ nJ noo> I/n 02

denoising

Slide stolen and adapted from Sung Hee Park
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Questions!

® TO-DOs
® Keep thinking about the final project.

® Pick up tablets on Friday.

® Do the assigned readings for Monday.




